

E-SERIES BALL SCREW JACKS

POWERJACKS

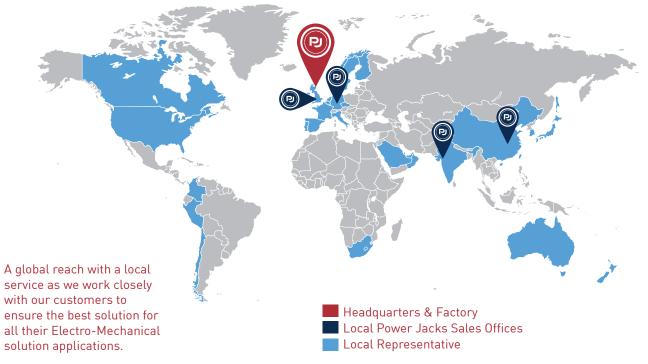
Best engineered solution for precision linear actuation, power transmission & jacking systems.

Capability

OUR EXPERTISE HAS BEEN BUILT ON A HISTORY OF MORE THAN 100 YEARS OF ENGINEERING, CRAFTSMANSHIP, VISIONARY DESIGN, QUALITY MANUFACTURE AND CUSTOMER CARE.

Power Jacks is a manufacturing/engineering company specialising in the design and manufacture of actuation, lifting and positioning solutions for applications in Industrial Automation, Energy, Defence, Medical, Transport, and the Civil Engineering sectors.

Headquartered near Aberdeen in the UK, the company is the UK's largest screw jack manufacturing facility, that uses the latest engineering technologies to deliver quality products (BS EN ISO 9001) that offer reliability, performance and economy.


Power Jacks deliver this high quality service in a safe (OHSAS 18001) and environmentally friendly (ISO 14001) working environment thanks to the highly trained, flexible and motivated teams that work throughout the business driving the company to higher levels of performance.

We know our customers demand our engineering expertise to help find a solution for their applications. We take pride in designing and delivering the best solution using standard or special designs that help improve your business.

Our Vision is to become the partner of choice for our products globally Our Mission is to provide high quality lifting & positioning solutions.

Global Reach

Power Jacks has local representation in 26 countries and supplies its products to more than 80 countries worldwide.

Contents

POWERJACKS

1. Introduction

Translating Screw Jack Building System	6
Rotating Screw Jack Building System	7
Jacking Systems	8
Screw Jack Product Code	10
Selecting a Screw Jack	14

2. E-Series - Ball Screw Jack......18 Features21 E-Series Translating Ball Screw Jack 10kN26 E-Series Rotating Ball Screw Jack 10kN27 Anti-Rotation41

3. E-Series - Ball Screw Jack Accessories 42 End Fittings 44 Ball Screw Jack Bellows Boots 46 Upright Ball Screw Jack Bellows Boots 47 Inverted Ball Screw Jack Bellows Boots 48 Motor Adapter 50 Trunnion Mounts 51 Limit Switches on Cover Pipe 54 Rotary Limit Switch - RLS 55

4. Engineering Guide	56
Screw Jack Performance	57
Machine Screw Jack Column Strength Charts	58
Ball Screw Jack Column Strength Charts	
Critical Screw Speed Charts	61
Key Torque & Side Load Rating	62
Radial Loads on Screw Jack Worm Shaft	63
Axial Backlash Ratings	64
Operation	65
Calculation Formulae	71

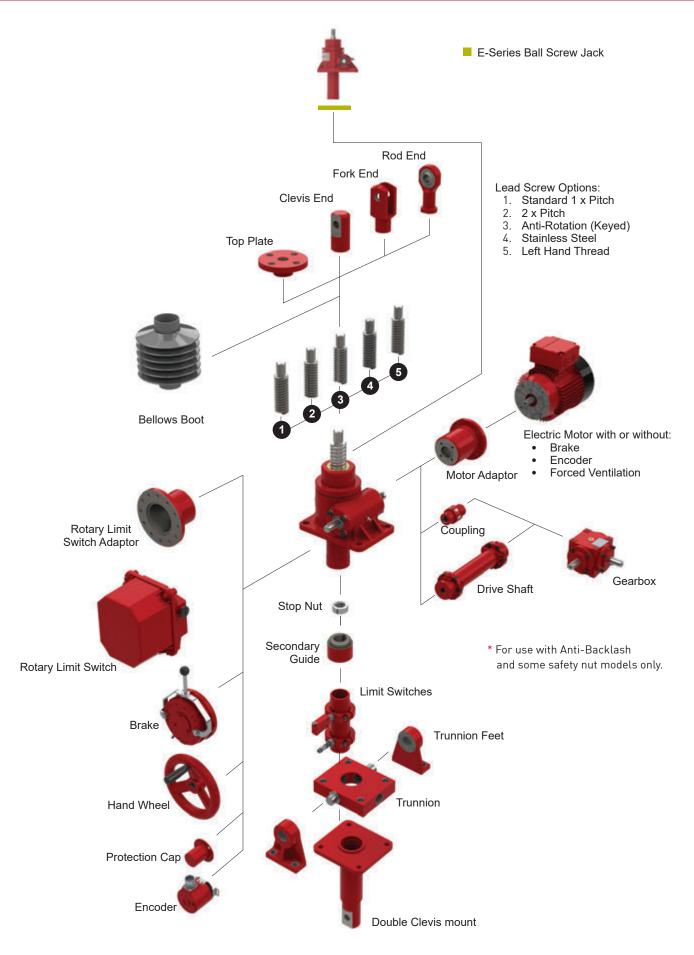
tryour 3DCAD portal

11 . (2)

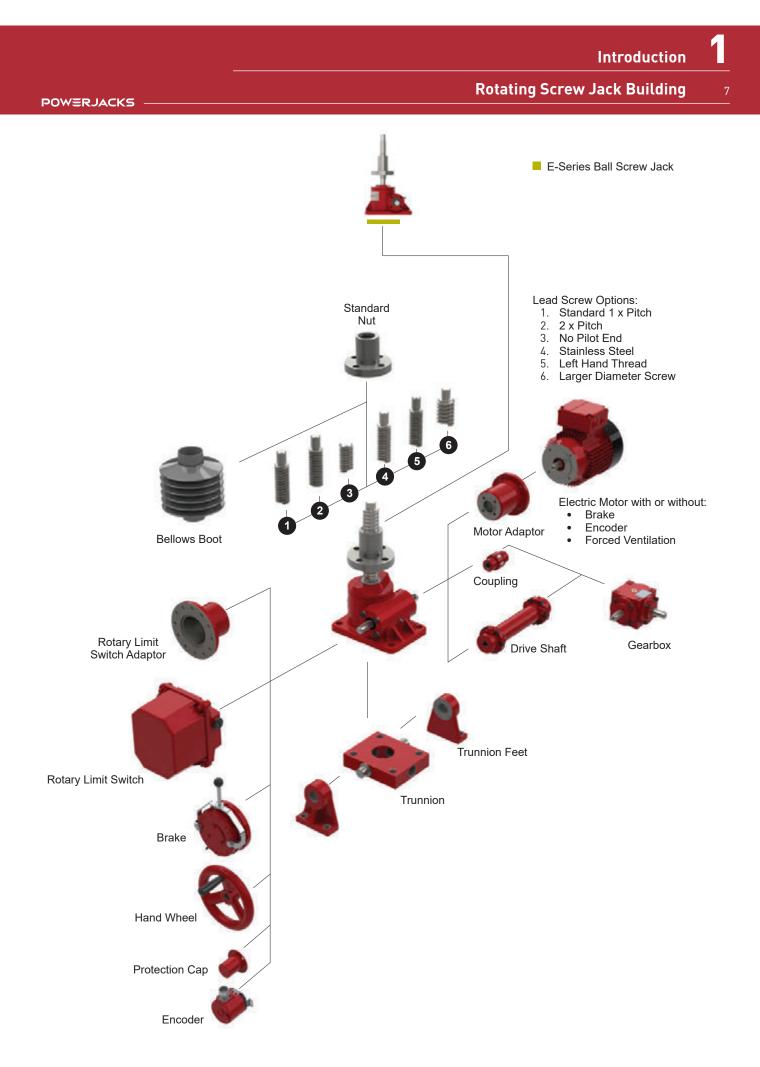
.....

POWERJACKS

POWERJA


Engineering CAD Con

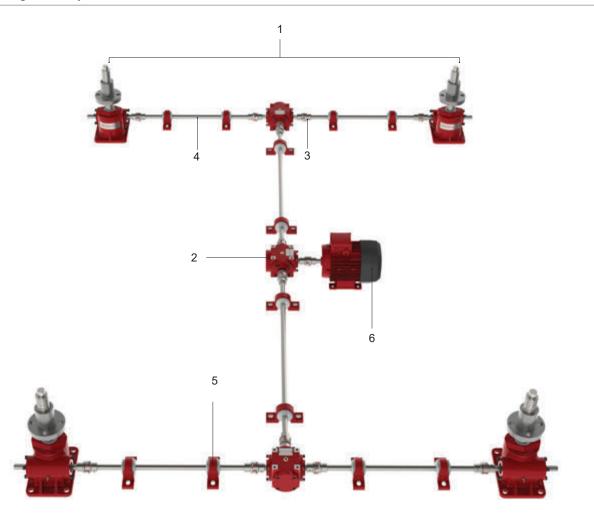
DE


Engineering: CND Configur

- 2D CAD Drawings
- 3D CAD Models
- Dimensioned Data Sheet

Introduction

Special Screw Jacks Design Available when you need more than the standard solution.



Special Screw Jacks Design Available when you need more than the standard solution.

Screw jacks can be connected together in systems so that multiple units can be operated and controlled together. These jacking system arrangements or configurations can be built in many formats with the use of bevel gearboxes, motors, reduction gearboxes, drive shafts, couplings, plummer blocks and motion control devices.

Four of the most popular system configurations are the 'H', 'U', 'T' and 'I' configured jacking systems. Note that multiple screw jacks can be linked together mechanically or electrically. The latter is useful if there is no space for linking drive shafts.

Typical 'H' configuration System

- 1. Screw Jack
 - E-Series Rotating Ball Screw Jack shown here.
- 2. Bevel Gearbox
- Range-N Spiral Bevel Gearboxes
- 3. Flexible Coupling
- A range of couplings are available to suit each systems requirements including Jaw, Spacer and Geared types.
- 4. Drive Shaft

Every drive shaft is manufactured to order for each system design. Self supporting drive shafts (spacer couplings) are also available.5. Shaft Supports (plummer blocks).

Electric Motor

Standard electric motors in 3 phase, 1 phase, DC and servo designs. Supplied as a basic motor or as part of a geared motor. Brakes are available for all motors.

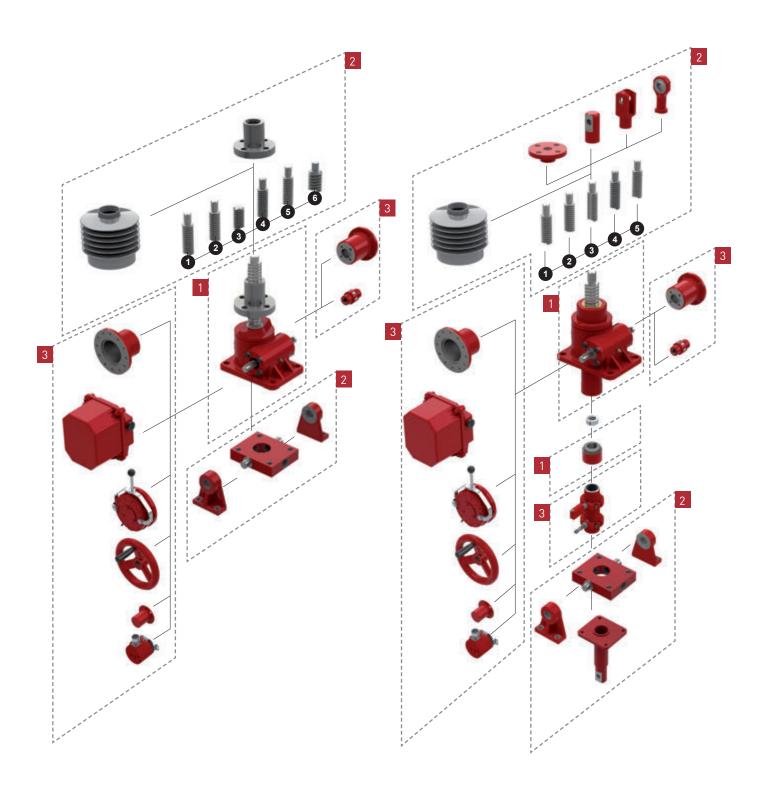
Jacking systems are not limited to the number of screw jacks shown here. They are regularly supplied to clients with 2, 4, 6, 8 jack systems. Larger systems can extend up to 16 or higher. With the use of electronic synchronisation/control multiple systems or screw jacks can be used in unison. Extending the possible number of screw jacks used in unison in excess of 100.

To facilitate electronic control of screw jacks, feedback devices (eg encoder, limit switch) are available, mounted on the screw jack or its motor or another system component.

'U' Configuration System

'l' Configuration System

'T' Configuration System



- POWERJACKS

1 GROUP-1 - Screw Jack Gearbox Definition

2 GROUP-2 - Screw Jack Features

3 GROUP-3 - Accessories

1 GRO	UP-1 - Screw Ja	ck Gearbo	x Definition								
1-Screw	v Jack Series		2	- Screw Type			ור	3- 9	Screw Co	onfigurati	on
E Serie	es		В	Ball Screw				R			
							- 1	Т		ing Screw	
							1		1		
4-7 - Cap	acity 00'	10	0025	0050	0100		0200		0)300	0500
kN	10		25	50	100		200		3	300	500
	l										
9 Chara	cter Space										
9-Gearbo	1				12 - Gea	1	- ··				
U	Upright						Option 1 Ratio				
I	Inverted				2	· ·	Option 2 Ratio Option 1 Ratio with gear rotation monitor #12				
10 0											
10 - Gearbox Feature - 1				В	Uption 2 F	tatio wi	th ge	ar rotation	n monitor #1:	L	
0	None	0			-						
К	Anti-Rotation (Keyed)				13 - Lifting Screw Lead						
C	Secondary Guide				- 1	Option 1 Lead - Right Hand (Standard) #4					
E	Anti-Rotation (keyed) with Secondary Guide				2	Option 2 Lead - Right Hand ^{#4}					
H T	Double Hub Nut ^{#1} Trunnion Nut	, #12			A	Option 1 Lead - Left Hand ^{#5}					
U		Es at			В	Option 2 Lead - Left Hand ^{#5}					
U	Trunnion Nut with	Feet									
44.0					1/ Wo	rm Shaft Typ	o #16				
	box Feature - 2				0	Standard					
0	None	hia antian ia		hall assuus)							
A B				ball screws)	S	Stainless Steel Worm Shaft					
C						Janiess	Jieer	VOTITI	Shart		
C Anti-Backlash with wear monitor - Sensor R Safety Nut Tension				1							
S	Safety Nut Compression				15 - Worm Shaft Ends						
T			r Monitor - visual		0	Both					
U	Safety Nut Compression with wear monitor - visual				L	Left Han	d Only				
V	Safety Nut Tension with Wear Monitor - Sensor				R	Right Ha	nd Only	/			

W Safety Nut Compression with wear monitor - Sensor

16 - Character Space

Х

Υ

Both with Protective Cap on LHS #11

Both with Protective Cap on RHS #11

Screw Jack Product Code

GROUP-2 - Screw Jack Features

Γ	17-20 - Stroke	0000
	Stroke in mm	0-9999

21 - Character Space

3

22 - End Type #16 #17					
E	Threaded End				
С	Clevis End				
Т	Top Plate				
F	Fork End (standard available up to 200KN)				
R	Rod End (standard available up to 200KN)				
J	Plain End				
Р	Pilot End #1				
N	No Pilot End #1				

23 - Gearbox Mounting				
В	Base Mount			
С	Second Clevis on Cover Pipe Standard #6 #9			
E	Second Clevis on Cover Pipe 90 degree #9			
Т	Trunnion Mount Standard #2			
U	T + Trunnion Feet			
Х	Trunnion Mount 90 degree #3			
Y	X + Trunnion Feet			

24 - Lifting Screw Material #16				
0	Standard			
S	Stainless Steel			
М	Standard with Low Friction Coating (Molycote)			
А	Standard with Protective Coating (Armaloy)			

25 - Lifting Screw Covers					
0	Cover Pipe & No Bellows Boot #15				
В	Cover Pipe & Fabric Bellows Boot #9				
F	Fabric Bellows Boot x 2 - Rotating Screw				
R	Cover Pipe & Rubber Bellows Boot #9				
S	Rubber Bellows Boot x 2 - Rotating Screw				
Ν	No Cover Pipe & No Bellows Boot #9				
W	Cover Pipe & PU Waterproof Bellows Boot #9				
Х	PU Waterproof Bellows Boot x2 - Rotating Screw				

26 - Character Space

GROUP-3 - Accessories

27 - Drive Type					
0	None, Standard Features	Н	Hand Wheel - LHS		
А	Motor Adapter Only, B14 - LHS	J	Hand Wheel - RHS		
В	Motor Adapter Only, B14 - RHS	R	Rotation Indicator (Visual) on worm shaft - LHS		
С	Motor Adapter B14 & Coupling - LHS	Т	Rotation Indicator (Visual) on worm shaft - RHS		
Е	Motor Adapter B14 & Coupling - RHS				

28- Motor Fra	28- Motor Frame Size / Drive Interface Size				
0	Not Applicable	F	112 Size IEC Frame		
А	63 Size IEC Frame	G	132 Size IEC Frame		
В	71 Size IEC Frame	Н	160 Size IEC Frame		
С	80 Size IEC Frame	I	180 Size IEC Frame		
D	90 Size IEC Frame	J	200 Size IEC Frame		
E	100 Size IEC Frame				

29 - Mounting Kit for Limit Switches & Stop Nuts #18					
0	None	Ρ	Inductive Proximity Sensor, 2, End of Stroke, Adjustable #9		
С	RLS-51 Rotary Cam Limit Switch - RHS	S	SKA Rotary Cam Limit Switch - RHS		
D	RLS-51 Rotary Cam Limit Switch - LHS	Т	SKA Rotary Cam Limit Switch - LHS		
E	RLS-51 Rotary Cam Limit Switch - RHS with Stop Nut	U	SKA Rotary Cam Limit Switch - RHS with Stop Nut		
F	RLS-51 Rotary Cam Limit Switch - LHS with Stop Nut	V	SKA Rotary Cam Limit Switch - LHS with Stop Nut		
м	Electro-Mechanical Limit Switch, 2, End of Stroke, Adjustable #?	W	Stop Nut		

Screw Jack Product Code

30 - Pair	nt, Lubricant, Seals #13 #14
0	Standard Paint, Lubricant & Seals
1	Standard Paint & Food Grade Lubricant & Standard Seals
2	Standard Paint, Nuclear Grade Lubricant & Seals
3	Standard Paint, High Temperature Lubricant & Seals
4	Standard Paint, Low Temperature Lubricant & Seals
5	Standard Paint, Biodegradable Lubricant & Standard Seals
А	No Paint, Standard Lubricant & Seals
В	No Paint & Food Grade Lubricant & Standard Seals
С	No Paint, Nuclear Grade Lubricant & Seals
D	No Paint, High Temperature Lubricant & Seals
E	No Paint, Low Temperature Lubricant & Seals
F	No Paint, Biodegradable Lubricant & Standard Seals
G	Standard Primer, Lubricant & Seals
н	Standard Primer & Food Grade Lubricant & Standard Seals
I	Standard Primer, Nuclear Grade Lubricant & Seals
J	Standard Primer, High Temperature Lubricant & Seals
к	Standard Primer, Low Temperature Lubricant & Seals
L	Standard Primer, Biodegradable Lubricant & Standard Seals
м	Epoxy Paint, Standard Lubricant & Seals
N	Epoxy Paint & Food Grade Lubricant & Standard Seals
Р	Epoxy Paint, Nuclear Grade Lubricant & Seals
R	Epoxy Paint, High Temperature Lubricant & Seals
S	Epoxy Paint, Low Temperature Lubricant & Seals
Т	Epoxy Paint, Biodegradable Lubricant & Standard Seals

Notes:

- #1 Rotating screw models only.
- #2 Trunnions on same side as worm shaft (standard).
- #3 Trunnions at 90° to worm shaft.
- #4 Standard right hand thread form. Worm shaft turns clockwise to extend screw.
- #5 Left hand thread form. Worm shaft turns anti-clockwise to extend screw.
- #6 Standard is clevis axis parallel to worm shaft.
- #7 Limit switch mounting included.
- #8 Plain End "A" has same dimensions as "E threaded end" except no thread form.
- #9 Translating screw models only.
- #10 Basic Translating and Rotating units in both Upright and Rotating versions (all variant & accessories on application).
- #11 All models except E-Series 5 kN & 10 kN models
- #12 Models 10 100kN only
- #13 Power Jacks defined standard paint available as a data sheet.
- #14 Power Jacks defined standard lubricant.
- #15 For Rotating Screw Jacks the "Cover Pipe" may actually be a "Plug"
- #17 If Lifting Screw is Stainless Steel material then the End Fitting is Stainless Steel as well by default.
- #18 Limit Switches not included. Limit switch specification to be detailed as separate item.

Product Code Example

EBR0025-I001200-0500-FB0B-CAE0 E-Series, Ball Screw, Rotating, 25kN, Inverted, No extra gearbox features, 6:1 gear ratio, 10mm lead on screw, 500mm Stroke, Fork End, Base Mount, Bellows Boot screw protection, Motor Adapter & Coupling Kit for IEC 63 Frame size on Left Hand Side (LHS), RLS-51 rotary canm limit switch on Right Hand Side (RHS) with Stop Nut, standard paint and lubrication.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
E	в	R	0	0	2	5	-	Т	0	0	1	2	0	0	-	0	5	0	0	-	F	в	0	в	-	С	A	Е	0

Five Step Guide to Initial Screw Jack Selection

The following selection procedure is applicable for Machine Screw and Ball Screw Jacks.

Calculate Power and Torque Requirements

Select a screw jack from the tables with adequate load carrying capacity and note the screw jack static and dynamic efficiency for required input speed.

Step 1 - Screw Jack Input Speed

N (rpm) = ______ Linear Speed (mm/min) x Gear Ratio Pitch (mm) x N° of Starts on Lifting Screw

Input speed should not exceed 1800 rpm. Number of starts on lifting screw is usually 1, unless otherwise stated.

Note: Screw Lead = Pitch x No of Starts

Step 2 - Operating Input Power (kW), P_{in}

P_{in}(kW) = ______ Load (kN) x Linear Speed (mm/min) 60000 x **η**_d

 η_d = Dynamic Screw Jack Efficiency

Step 3 - Operating Input Torque

P_{in} (kW) x 9550 T_{ino} (Nm) = _____ N (rpm)

Step 4 - Screw Jack Start-Up Torque

 $T_{ins} = \frac{\text{Load (kN) x Pitch (mm) x N^{\circ} of Starts on Lifting Screw}}{2 \times \pi \times n}$

2 x π x η x Gear Ratio

 η_s = Static Screw Jack Efficiency

Note: Screw Lead = Pitch x No of Starts

Step 5 - Mechanical Power and Torque Check

Check whether the screw jack power and torque required for the application is not greater than the maximum allowable mechanical input power (P_{merhanical}) and Start-Up Torque at Full Load (T_s) values specified in the screw jack performance tables.

If $P_{mechanical} > P_{in} \& T_s > T_{ins}$ then the screw jack selected is acceptable for power requirements.

Example Selection

Application Constraints

- Load on Screw Jack = 15 kN in Tension
- Linear Speed required = 100 mm/min

Consider all application constraints then choose a screw jack that looks suitable for the application with a load rating equal to or greater than the maximum working load. For this example, a 25 kN E-Series Ball Screw Jack with translating screw, 6:1 gear ratio, single start lifting screw (5 mm lead).

Calculate Power and Torgue Requirements

Step 1 - Screw Jack Input Speed

100 (rpm)

Step 2 - Operating Input Power (kW), P_{in}

15 (kN) x 100 (mm/min) P_{in}(kW) = _____ 60000 x 0.662

Step 3 - Operating Input Torque

0.038 (kW) x 9550 T_{ine} (Nm) = ----

 $T_{ino} = 3.63 \text{ Nm}$

N = 120 rpm

 $\eta_{d} = 0.662$

 $P_{in} = 0.038 \text{ kW}$

Input speed should not exceed 1800 rpm.

Step 4 - Screw Jack Start-Up Torque

т –	15 (kN) x 5 (mm) x 1 (N° of starts on Lifting Screw)	T _{ins} = 3.52 Nm
ins –	2 x π x 0.565 x 6 (Gear Ratio)	$\eta_{s} = 0.565$

Step 5 - Mechanical Power and Torque Check

Find the screw jacks mechanical power and torque rating from the performance data tables (refer P60).

 $P_{mechanical} = 1.5 \text{ kW} > P_{in} \text{ and } T_s = 5.9 \text{ Nm} > T_{ins}$

Therefore the screw jack selected is suitable for application for initial constraints tested, further analysis may be required to ensure the screw jack is suitable for all application conditions. Continue with further selection calculations or consult Power Jacks Ltd.

Screw Jack Constraints for Detailed Selection

Lifting Screw Column Strength

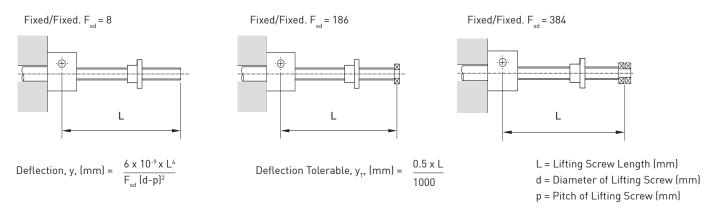
For compressive loads on the screw jack lifting screw column strength calculations are required to check for buckling. As a screw jack selection guide use the following process:

- 1. Determine the maximum column strength (L) for the screw jack being considered.
- Referring to the relevant column buckling chart determine the permissible compressive load (Wp) corresponding to the column length (L) for the appropriate end constraints. This permissible compressive load is the maximum load (inclusive of shock loads) which may be applied to the screw jack for a given column length.
- 3. Where an application involves human cargo or there is a risk to personnel, it is highly recommended that the permissible compressive load (as calculated above) be factored by 0.7 to enhance working safety. (Equivalent to a column strength safety factor of 5).

 $W_{phc} = W_p \times 0.7$ (Permissible compressive load for personnel risk applications)

Note 1. For detailed analysis of screw jacks and their systems consult Power Jacks.2. Safety factor of 3.5 for column strength's used for normal industrial cargo.

Lifting Screw Critical Speed


For fast operating rotating screw jacks, the critical speed (rotational speed) of the lifting screw needs to be considered in case of shaft whirling. To calculate the critical speed for rotating screw jacks:

- 1. Refer to the appropriate critical speed chart.
- 2. Select the correction factor F_{cs} corresponding to the end support conditions for the application.
- 3. From the critical speed chart, select the critical speed corresponding to the unsupported screw length (m) and the screw jack load rating (kN).
- 4. Calculate the limiting critical speed with the formula: Limiting Critical Speed = Critical screw speed x F_{cc}

Lifting Screw Deflection

The lifting screw of a screw jack mounted horizontally will deflect under its own weight to some extent. The amount of deflection tolerable (y_{τ}) should be less than 0.5 mm per metre.

Deflection Factors, F_{sr}

If $y < y_{\tau}$ then the lifting screw deflection is acceptable.

Note: This is only a deflection guide. For detailed analysis, including methods to reduce deflections, consult Power Jacks Ltd.

Screw Jack Input Torque

Start up/static torque values are listed in all performance tables. Whereas dynamic torque values are either calculated using the tabulated dynamic efficiencies or taken direct from torque tables where listed. For detailed screw jack analysis consult Power Jacks Ltd.

Side Loads on Screw Jacks

It is recommended that all side loads (F_{sl}) are carried by guides in your arrangement and not by the lifting screw and nut. If there are any side loads on the screw jack, they must not exceed those tabulated in the Engineering Guide, Side Load Rating Section, and it must be noted that any such loads will adversely affect the life of the lifting screw and nut.

Radial Forces on Screw Jack Worm Shaft

For applications where a screw jack is belt driven, radial force (F_R) values exerted on the worm shaft must not exceed those tabulated in the Engineering Guide Section. Values are tabulated for the metric machine screw jacks and ball screw jacks. The values are maximum values for the screw jacks at rated load regardless of worm speed or load direction.

Screw Jack Self-Locking

Approximately 50% of machine screw jacks are self-locking either in the gearbox or the lifting screw, however to ensure there is no selflowering and to reduce drift due to the motor slowing, a brake is recommended. Standard motor frame size brakes will be suitable for most applications with only slight vibration and thermal fluctuation present. Motor selection as normal. For dynamic braking consult Power Jacks.

Ball screw jacks and roller screw jacks always require a brake as their high efficiency makes them self-lowering.

Use the closest standard brake size that is greater or equal to the motor brake torque required.

Note 1. Self lowering can occur in any jacking system not fitted with a brake, where high levels of vibration are present in the application. 2. Power Jacks recommend the use of a brake on single screw jack applications in the vertical position.

Jacking System Power Input

Total Input Power for Jacking Systems (kW), P.:

```
P<sub>s</sub> = _____ Input Power per Screw Jack (kW) x Number of Screw jacks
```

Arrangement Efficiency x Gearbox Efficiency

Number of Screw Jacks in System	2	3	4	6-8
Jacking System Efficiency	0.95	0.90	0.85	0.80

Gearbox Efficiency = Bevel Gearbox Efficiency x Reduction Gearbox Efficiency

Bevel Gearbox Efficiency = 0.95 typical

Reduction Gearbox Efficiency = Consult unit details, if no reduction gearbox present assume efficiency of 1.

Note

For Screw Jacks connected in-line, the worm shaft can transmit up to 3 times the torque for a single screw jack at its maximum capacity, except the E--0200 (200kN) Unit which can transmit 1.5 times the torque.

2

E-Series Ball Screw Jack

HIGH EFFICIENCY BALL SCREW JACK IN A COMPACT DESIGN WITH INTEGRATED SAFETY DEVICE.

Overall operating efficiency is as high as 70% in some models, depending on the worm gear ratio.

300kN

10kN

TRANSLATING SCREW JACKS

25kN

50kN

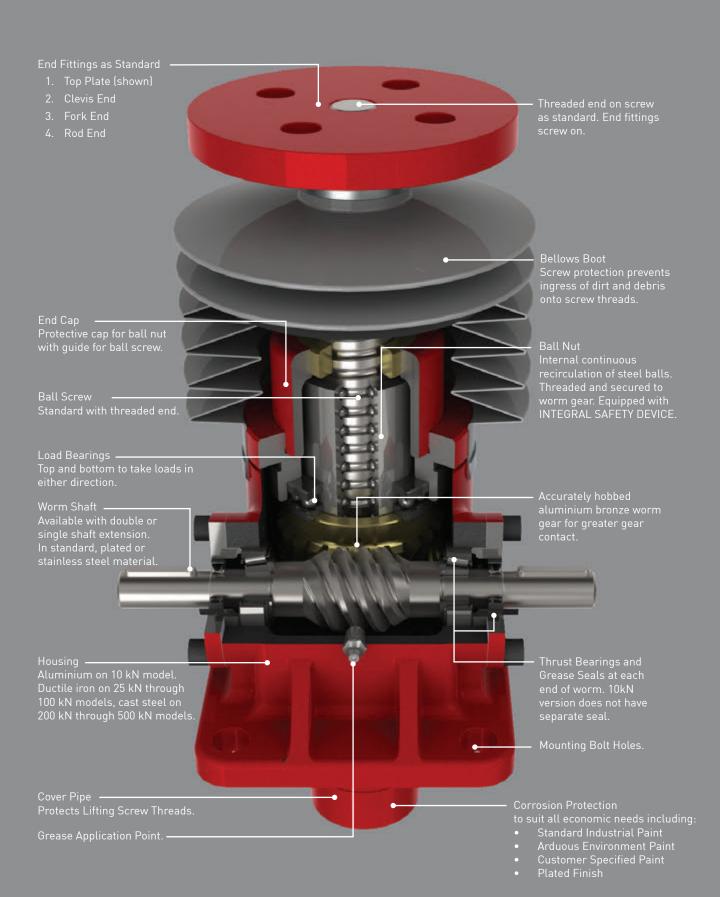
Features

I 10kN

- High Efficiency Power Jack
- Metric Single Face Ball Screw Jacks
- Capacities 10kN to 300 kN as standard
- Integral Safety Device for 25kN & above as standard
- Translating and Rotating Screw in Upright and Inverted types
- Precision Worm Gear Set and Ball Screw Drive
- 2 Gear ratios and 2 screw leads as standard
- Pre-loaded and Anti-rotation ball screw options
- 6 mounting options including trunnion and double clevis
- Special custom designs available

50kN

[100kN


25kN

200kN

200kN

100kN

300kN

POWERJACKS

Translating Screw

Upright

Typical Applications

Inverted

Rotating Screw

Ball Screw Jacks are generally used when the application has a relatively high duty cycle or the input power for a given screw jack is to be minimised. The high efficiency of the ball screw & nut significantly increase the efficiency of a screw jack in comparison to a Machine Screw Jack. Due to their high efficiency they nearly always require a brake to hold position. They are used in a wide variety of applications including Automotive, Steel, Glass, Defence, Nuclear and Solar industries.

Standard Designs

The standard E-Series ball screw jack is available in translating and rotating screw designs in capacity sizes from 10kN to 500kN. The design is optimised for performance and a compact form, which includes an added safety device as standard for most models. There is a large selection of options and accessories (section-7) that allows you to configure a standard design that is just right for your application. These options include Zero-Backlash and Anti-Rotation designs.

Special Designs

We can fully customise our screw jacks so that your application can be the best.

Customisation can be anything from a small modification such as an extra bolt hole on an end fitting to a completely new design of screw jack based on our class leading technology.

For more details please see the Special Screw Jack information in Section-8 or contact us today with your requirements. Our team are looking forward to working with you.

Selecting the Right Screw Jack

Consider all application constraints then choose a product that looks suitable for the intended application. Calculate the power and torque requirements. This is a 5 step process:

- Screw Jack Input Speed (RPM)
- Operating Input Power (kW)
- Operating Input Torque (Nm)
- Screw Jack Start-up Torque (Nm)
- Mechanical Power and Torque Check

Systems

The screw jacks can be connected together in systems so that multiple units can be operated and controlled together. These jacking system arrangements or configurations can be built in many formats with the use of bevel gearboxes, motors, reduction gearbox, drive shafts, couplings, plummer blocks and motion control devices.

The use of bevel gearboxes allows the distribution of drive throughout a jacking system. The gearboxes come in 2,3 and 4 way drive types. See the Bevel Gearbox Section-10 for more details.

Bevel gearboxes and other system components can also be supplied in stainless steel or other corrosion resistant designs.

Two of the most popular system configurations are the 'H' and 'U' configured jacking systems. Remember that multiple screw jacks can be linked together mechanically or electrically. The latter is useful if there is no space for linking drive shafts.

If multiple ball screw jacks are connected in a mechanically linked system then the complete system in some designs may be considered self-locking. If you would like this checked consult Power Jacks. Alternatively, to be sure, include a brake on the system either as a stand alone device or as a brake motor.

POWERJACKS

CAVENDISH LABORATORY ANTENNA DISH

Position adjustment of Arcminute Microkelvin Imager (AMI) to achieve a pointing accuracy of better than half a minute of arc (1/120 of a degree). 10 x antenna dishes all in close proximity of each other. Measuring the weight of the universe by analysing "dark matter".

10 x off 50kN E-Series special metric ball screw jacks based on EBT0050 in translating screw configuration with a stroke of 1050mm. These ball screw jacks operate in normal UK outdoor conditions and allow the antenna to operate at wind speeds of up to 50mph.

For more application examples see the 'Power at Work' brochure or www.powerjacks.com.

2

POWERJACKS

Screw Jack Standard Performance

	Model	ι		EBT0010 EBR0010		0025 0025		0050 0050		0100 0100		0200 0200	EBT0300 EBR0300	EBT0500 EBR0500
	Capacity	(kN)		10	2	5	5	0	10	00	20	00	300	500
1.00	Dia	imete	er (mm)	20	2	5	4	.0	5	0	6	3	80	
Lifting Screw	Lead		Option	1	1	2	1	2	1	2	1	2	1	
	Leau		Lead (mm)	5	5	10	10	20	10	20	10	20	20	
Gear Ratios	Option 1			5:1	6		6:1		8		8		10 2/3:1	
		Optic	on 2	20:1	24	:1	24	i:1	24	:1	24	:1	32:1	
Turn of worm for travel	Option	1	6 Turn	6mm	5mm	10mm	10mm	20mm	7.5mm	15mm	7.5mm	15mm	11.25mm	
of Lifting Screw	Option	2	24 Turn	6mm	5mm	0mm	10mm	20mm	10mm	20mm	10mm	20mm	7.5mm	
Maximum Input	Gear	Ratio	Option 1	0.375	1.5		;	3	3.	3.75		75	6.0	
Power (kW)	Gear	Ratio	Option 2	0.19	0.3	375	0.55		1.125		1.125		1.9	
Start-up Torque at	Gear	Ratio	Option 1	2.7	5.9	11.1	23.4	44.6	36.4	68.5	75.2	139.4	182	lest
full load (Nm) †	Gear	Gear Ratio Option 2		1.2	2.6	4.9	10.7	20.4	19.1	35.8	39.4	72.9	107.3	On Request
Maximum Th	rough Tor	rque ([Nm]	20	5	9	168		347		396		1440	ō
Lead Screw F	Restrainin	ng Tor	rque (Nm)	9	23	43	88	167	181	340	370	690	1030	
Worm Shaft I	Maximum	Radi	al Load (N)	325	38	30	74	40	10	00	16	00	2170	
Maximum In	put Speed	l (rpm	ן)	1800	18	00	18	00	18	00	18	00	1800	
Gear Case M	aterial			Aluminium	SG	Iron	SG	Iron	SG	Iron	St	eel	Seel	
Weight (kg) -			EMT	2.36	8.	45	14	4.9	24	4.3	42	2.4	92.4	
= 150m	m		EMR	2.6	8.	85	16	.54	28	3.8	49	.58	113.78	
Weight (kg)			EMT	0.11	0.	21	0.	32	0.	58	0.	84	1.55	
extra 25r	nm		EMR	0.05	0.	11	0.	19	0.	36	0.	52	1.13	
Ball	Ball Nut Safety Device		On Request	Stan	dard	Standard		Standard		Standard		On Request		

+ For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

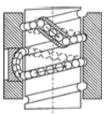
Efficiency - Option 1 Gear Ratio

Model	EBT0010 EBR0010				EBT0050 EBR0050		EBT0100 EBR0100		0200 0200	EBT0300 EBR0300	EBT0500 EBR0500
Gear Ratio	5:1	6	:1	6	:1	8	:1	8	:1	10 2/3:1	ist
Lifting Screw Lead (mm)	5	5	10	10	20	10	20	10	20	20	dne
Static Efficiency	0.603	0.565	0.600	0.567	0.595	0.546	0.581	0.529	0.571	0.492	Re
Dynamic Efficiency	0.681	0.662	0.692	0.663	0.687	0.645	0.674	0.631	0.665	0.595	o

Efficiency - Option 2 Gear Ratio

Model	EBT0010 EBR0010				EBT0050 EBR0050		EBT0100 EBR0100		0200 0200	EBT0300 EBR0300	EBT0500 EBR0500
Gear Ratio	20:1	24	:1	24	i:1	24	i:1	24	:1	32:1	st
Lifting Screw Lead (mm)	5	5	10	10	20	10	20	10	20	20	dne
Static Efficiency	0.341	0.320	0.340	0.310	0.325	0.348	0.370	0.337	0.364	0.278	Re
Dynamic Efficiency	0.429	0.419	0.438	0.407	0.422	0.450	0.470	0.440	0.465	0.371	o

Note


1. Efficiency values for standard grease lubricated worm gear box and lifting screw.

Power Jacks ball nut employs the internal ball transfer system for recirculating the balls. This design provides for:

- Robust design
- Small ball nut body outer diameter
- Smooth movement
- Less turns per circuit
- Absence of parts liable to wear.

Solid formed nylon wiper seals on the ball nut prevents ingress of foreign matter and retain lubrication within the nut.

Standard

Ball Screw Life

Theoretical service life can be expressed in either L_{10} 10⁶ revolutions or L_h 10³ hours or L_d kilometres. As the life of a ball screw is determined by metal fatigue it is not possible to accurately predict life. However, it is practical to suppose that 90% of a sufficiently large number of equally sized ball screws running under equal working conditions will reach L_{10} or L_h without evidence of material fatigue. The L_{10} ball screw life is rated using the Dynamic Capacity, which is the maximum constant axial load that can be applied in running conditions for a life of 1.10⁶ revolutions of the ball screw. This can be expressed in linear travel (L_d).

Where L

L10= Service Life (millions of revolutions)

$$\mathbf{L}_{d} = L_{10} * P$$
 $\mathbf{L}_{d} = Service Life (km)$

P = Pitch of Ball Screw (mm)

Li	near Travel L _d ir	Working Load (kN)											
Model	Capacity (kN)	Pitch (mm)	5	10	25	30	50	75	100	150	200	250	300
E28501	10	5	20.5	2.5	-	-	-	-	-	-	-	-	-
E3802	25	5	381	48	3	-	-	-	-	-	-	-	-
E38021	25	10	1 775	222	14	-	-	-	-	-	-	-	-
E3805	50	10	11 978	1 497	96	55	12	-	-	-	-	-	-
E38051	50	20	17 039	2 130	136	79	17	-	-	-	-	-	-
E3810	100	10	32 287	4 036	258	149	32	10	4	-	-	-	-
E38101	100	20	38 503	4 813	308	178	39	11	5	-	-	-	-
E3820	200	10	162 327	20 29 1	1 299	752	162	48	20	6	3	-	-
E38201	200	20	320 060	40 008	2 560	1 482	320	95	40	12	5	-	-
E3830	300	20	903 882	112 985	7 231	4 185	904	268	113	33	14	7	4


Use the following formulae to calculate the service life in terms of hours running:

$$L_{h} = \frac{L_{10} * Gr}{60 * n}$$

L_h= Service Life (hours)
 L₁₀= Service Life (revolutions)
 n_m= Mean Screw Jack Input Speed (rpm)
 Gr = Gear Ratio

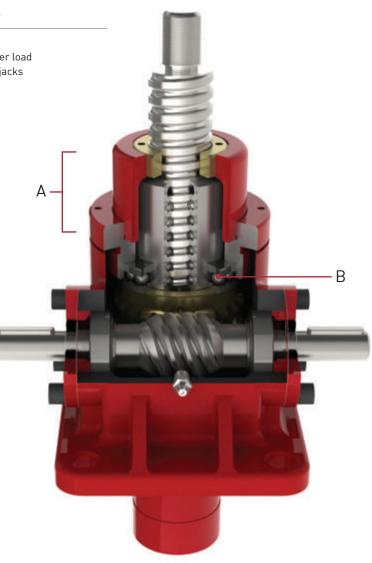
Note: 1. Ball screw life based on dynamic load calculated according to DIN69051 Part 4.

Extra Safety As Standard with Integral Safety Device

25kN TO 200kN Power Jacks Metric Ball Screw Jacks have an integral safety device as standard. This provides two important safety roles:

- In the unlikely event of an excessive wear in the ball screw drive, the safety device will contact the screw shaft and act as an "ACME" Thread. This will provide early warning of any possible ball screw failure and is capable of providing drive in the event of any such failure. This can allow a control system to alert an operator to wear of this kind by monitoring the increase in motor current required to drive the system due to the increased friction generated by the device.
- 2. It allows the ball nut on the screw jack to sustain a load in the event of catastrophic ball failure. The safety of industrial and human cargo is therefore improved. Ball screw systems without this device could collapse under load or drop the carried load.

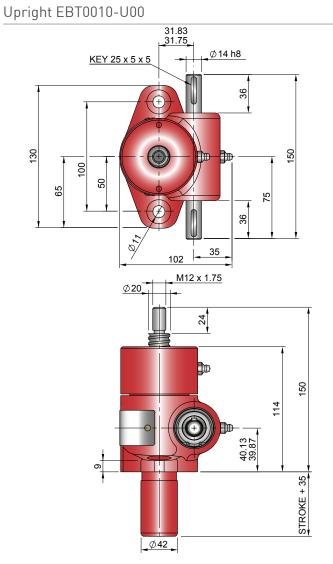
Note: Model 10kN & 300kN ball screw jack does not have safety device as standard, if required consult Power Jacks Ltd.


Optimal Ball Nut Alignment & Load Capability

Better by Design Power Jacks Ball Screw Jacks mount the upper load bearing directly on top of the gear the same as all other screw jacks in our range.

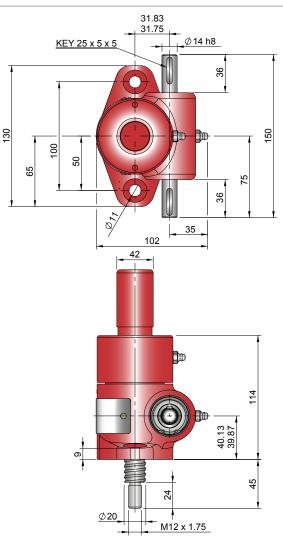
Advantages:

- A. Compact Design
- B. Optimum Gear Holding & Accuracy

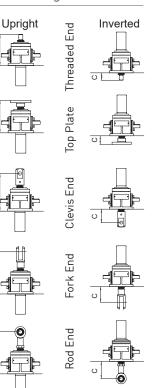


26 10kN Translating

Inverted EBT0010-I00



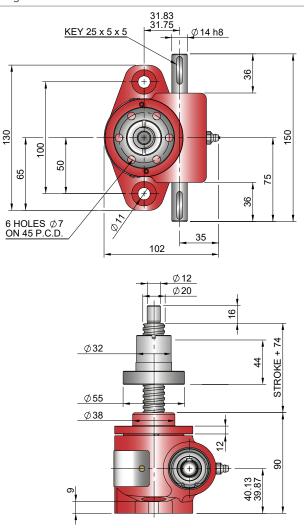
Performance


Model			EBR0010 EBT0010
Capacity		kN	10
	Diame	ter (mm)	20
Lifting Screw	Lead	Option	1
	Leau	mm	5
	Gear Ratio		5:1
Gear Ratio Option 1	Static Effic	iency	0.603
	Dynamic E	fficiency	0.681
	Gear Ratio		20:1
Gear Ratio Option 2	Static Effic	iency	0.341
	Dynamic E	fficiency	0.429
Max. Input	Gear Ratio	Option 1	0.375
power (kW)	Gear Ratio	Option 2	0.18
Start up torque at full load	Gear Ratio	Option 1	2.7
(Nm)	Gear Ratio	Option 2	1.2

Model			EBR0010 EBT0010				
Capacity	kN			0			
Lifting Screw		5					
Turn of worm for	Gear Ratio 1	6 Turn	6mm				
travel of lifting screw Gear Ratio 2 24 Turn 6mm							
Maximum Thr	ough Torque (Nn	n)	2	0			
Lifting Screw	Restraining Torq	ue (Nm)	ç	7			
Worm Shaft M (N)	aximum Radial I	_oad	32	25			
Maximum Inp	ut Speed (rpm)		18	00			
Gear Case Ma	terial		Alum	inium			
Mainht (ka)	taska 150-aa		EMT	2.36			
Weight (kg) - stroke = 150mm EMR 2.6							
Waight (kg)	an autra 25mm	straka	EMT	0.11			
vvergrit (kg) - p	er extra 25mm s	stroke	EMR	0.05			

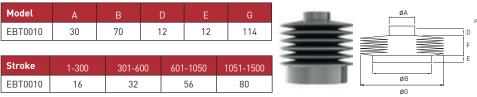
Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

Closed Height

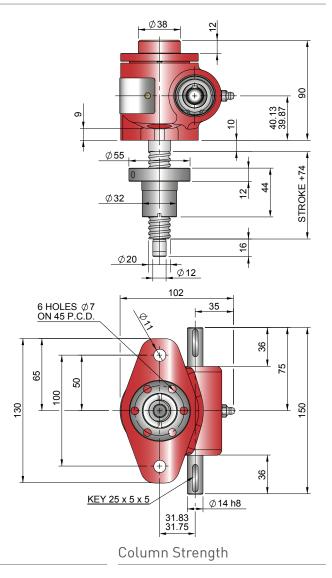


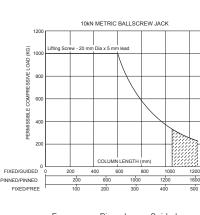
Upright EBR0010-U00

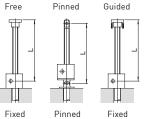
10kN Rotating


27

Closed Height & Bellows Boots


Closed	Threaded End		Top Plate		Clevi	s End	Fork	End	Rod End			
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted		
EBT0010	125	45	125	45	145	65	148	98	150	70		
Stroke (mm)		EBT0010 with Bellows Boots										
1-300	166	61	166	61	186	81	189	84	209	104		
301-600	182	77	182	77	202	97	205	100	225	120		
601-1050	206	101	206	101	226	121	229	124	249	144		
1051-1500	230	125	230	125	250	145	253	148	273	168		

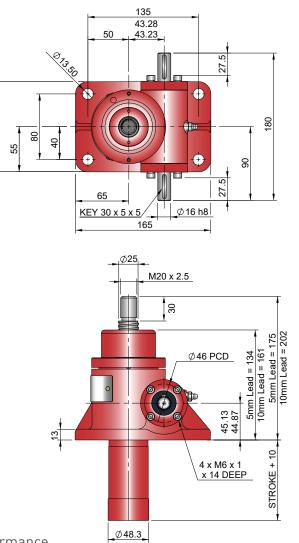


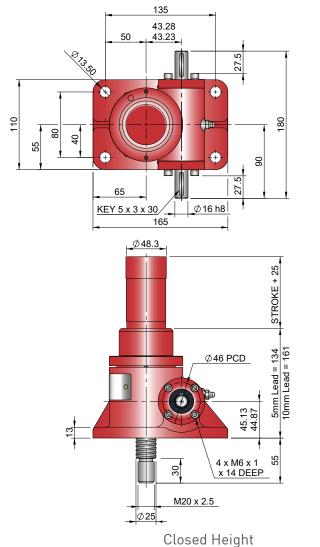

Note

- 2
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 10mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

⁵

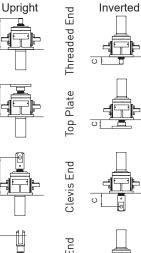

28 **25kN Translating**



Upright EBT0025-U00

110

Inverted EBT0025-I00

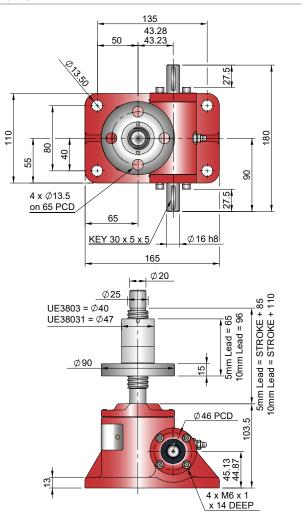


Performance

Model			EBT0025 EBR0025			
Capacity		kN	2	5		
	Diame	ter (mm)	25			
Lifting Screw	Lead	Option	1	2		
	Lead	mm	5	10		
	Gear Ratio		6	:1		
Gear Ratio Option 1	Static Effic	iency	0.565	0.600		
	Dynamic E	fficiency	0.662	0.692		
	Gear Ratio		24	:1		
Gear Ratio Option 2	Static Effic	iency	0.320	0.340		
	Dynamic E	fficiency	0.419	0.438		
Max. Input	Gear Ratio	Option 1	1.5			
power (kW)	Gear Ratio	Option 2	0.3	875		
Start up torque at full load	Gear Ratio	Option 1	5.9	11.1		
(Nm)	Gear Ratio	Option 2	2.6	4.9		

Model			EBT0025 EBR0025			
Capacity	kN		2	5		
Lifting Screw	Lifting Screw Lead (mm)					
Turn of worm for	Gear Ratio 1	6 Turn	5mm	10mm		
travel of lifting screw	Gear Ratio 2	24 Turn	5mm	10mm		
Maximum Thr	ough Torque (Nn	n)	59			
Lifting Screw	Restraining Torq	ue (Nm)	23	43		
Worm Shaft M (N)	aximum Radial I	_oad	380			
Maximum Inp	ut Speed (rpm)		18	00		
Gear Case Ma	terial		SG	Iron		
Wainht (ka)	150		EMT	8.45		
weight (kg) - s	stroke = 150mm		EMR	8.85		
Woight (kg)	an avtra 25mm	stroko	EMT	0.21		
weight (kg) - p	per extra 25mm s	ылоке	EMR	0.11		

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice


O

Rod End

π



Upright EBR0025-U00

Closed	Threaded End			Top Plate			Clevis End			Fork E	nd	Rod E		nd	
Height "C"	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted
EBT0025	14	45	55	14	45	55	1	70	80	19	74	104	19	90	100
Stroke (mm)	EBT0025 with Bellows Boots														
Lead (mm)	5	10	5 & 10	5	10	5 & 10	5	10	5 & 10	5	10	5 & 10	5	10	5 & 10
1-300	180	200	100	180	200	100	205	225	125	229	249	149	240	260	160
301-600	190	210	110	190	210	110	215	235	135	239	259	159	250	270	170
601-1050	210	230	130	210	230	130	235	255	155	259	279	179	270	290	190
1051-1500	230	250	150	230	250	150	255	275	175	279	299	199	290	310	210

Inverted Screw Jacks - Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 10mm Inverted Screw Jacks - Recommended bellows boot mounting plate ØB x (E +5mm) thick.

- 4
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. 5

6 7 Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.

95.5 0 87 3 45. 13.5 5mm Lead = STROKE +85 10mm Lead = STROKE + 110 <u>Ø90</u> 5mm Lead = 65 10mm Lead = 96 15 DE3803 = Ø40 DE38031 = Ø47 Ø25 22 Ø20 165 Ø16 h8 <u>KEY 25 x 5 x 5</u> 65 4 HOLES Ø 13.5 ON 65 PCD 27.5 \oplus £4. 110 180 8 40 55 (\mathcal{A}) \oplus 8 S. S. 27.5 43.28 50 43.23

E-Series - Ball Screw Jack

25kN Rotating

4 x M6 x 1 x 14 DEEP

Column Strength

135

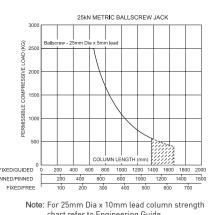
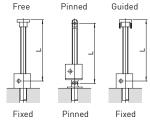
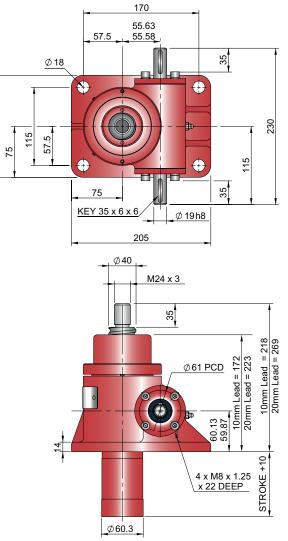



chart refer to Engineering Guide

29

Inverted EBR0025-100

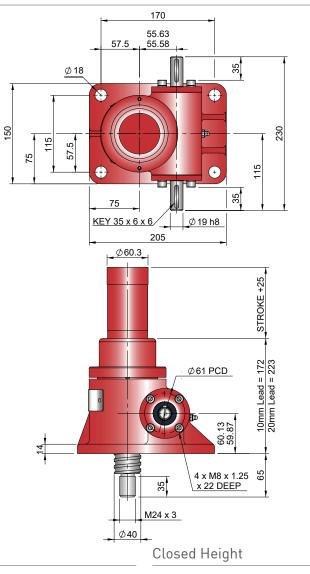
Ø46 PCD

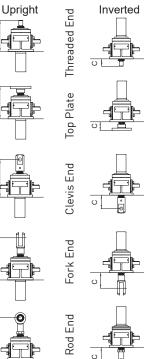

30 50kN Translating

Upright EBT0050-U00

150

Inverted EBT0050-I00

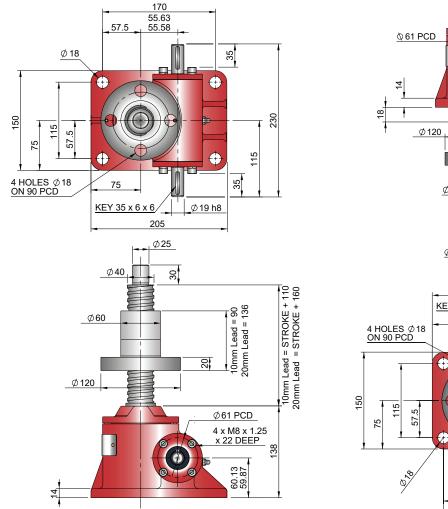



Performance

Model	Model					
Capacity		kN	5	0		
	Diame	ter (mm)	4	0		
Lifting Screw	Lead	Option	1	2		
	Leau	mm	10	20		
	Gear Ratio		6:	:1		
Gear Ratio Option 1	Static Effic	iency	0.567	0.595		
	Dynamic E	fficiency	0.633	0.687		
	Gear Ratio		24	:1		
Gear Ratio Option 2	Static Effic	iency	0.310	0.325		
	Dynamic E	fficiency	0.407	0.422		
Max. Input	Gear Ratio	Option 1	3	.0		
power (kW)	Gear Ratio	Option 2	0.55			
Start up torque at full load	Gear Ratio	Option 1	23.4	44.6		
(Nm)	Gear Ratio	Option 2	10.7	20.4		

Model	Model					
Capacity	kN		5	0		
Lifting Screw	Lifting Screw (mm)					
Turn of worm for	Gear Ratio 1	6 Turn	10mm	20mm		
travel of lifting screw	Gear Ratio 2	24 Turn	10mm	20mm		
Maximum Thr	ough Torque (Nn	n)	168			
Lifting Screw	Restraining Torq	ue (Nm)	88	167		
Worm Shaft M (N)	aximum Radial I	_oad	740			
Maximum Inp	ut Speed (rpm)		18	00		
Gear Case Ma	terial		SG	Iron		
Waight (kg)	troko - 150mm		EMT	14.9		
vveignt (kg) - s	Weight (kg) - stroke = 150mm					
Waight (kg)	an avtra 25mm	stroko	EMT	0.32		
vvergrit (kg) - p	per extra 25mm s	ытоке	EMR	0.19		

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice



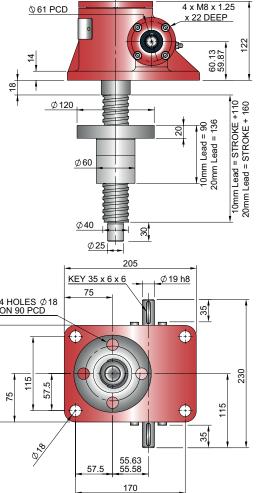
Upright EBR0050-U00

Inverted EBR0050-100

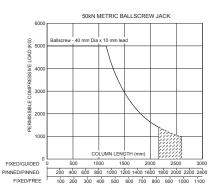
50kN Rotating

Closed Height & Bellows Boots

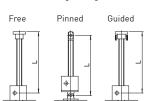
Closed	Closed Threaded End				Top Plate			Clevis End		Fork End			Rod End		
Height "C"	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted
EBT0050	18	35	65	18	35	65	2'	10	90	24	48	128	24	42	122
Stroke (mm)		EBT0050 with Bellows Boots													
Lead (mm)	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20
1-300	230	270	105	230	270	105	255	295	130	293	333	168	302	342	177
301-600	240	280	115	240	280	115	265	305	140	303	343	178	312	352	187
601-900	255	295	130	255	295	130	280	320	155	318	358	193	327	367	202
900-1050	260	300	135	260	300	135	285	325	160	323	363	198	332	372	207
1051-1500	280	320	155	280	320	155	305	345	180	343	383	218	352	392	227


Inverted Screw Jacks - Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks - Recommended bellows boot mounting plate ØB x [E +5mm] thick. Inverted Screw Jacks - Screw Jack mounting plate & bellows boot mounting plate are customers own supply t Control tapes fitted (increase outer diameter by 20mm approximately). 3

4


For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. 5

6 7


Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.

Column Strength

Note: For 40mm Dia x 20mm lead column strength chart refer to Engineering Guide

Fixed Pinned

Fixed

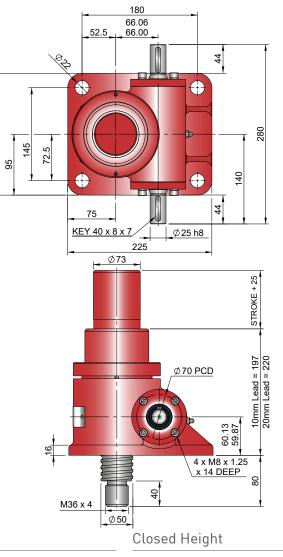
100kN Translating

Upright EBT0100-U00

190

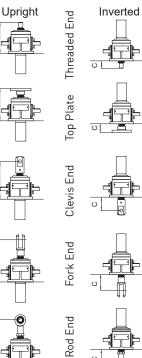
Inverted EBT0100-I00

190



Performance

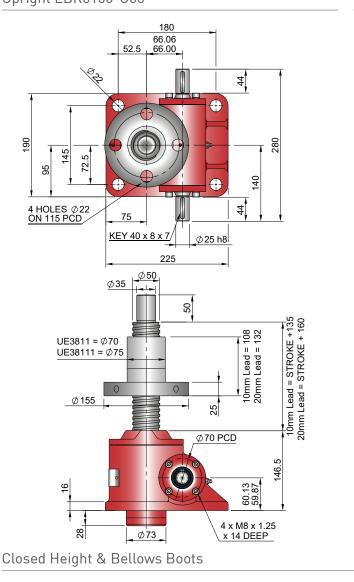
Model	Model					
Capacity		kN	10)0		
	Diame	ter (mm)	5	0		
Lifting Screw	Lead	Option	1	2		
	Leau	mm	10	20		
	Gear Ratio		8:	:1		
Gear Ratio Option 1	Static Effic	iency	0.546	0.581		
	Dynamic E	fficiency	0.645	0.674		
	Gear Ratio		24	:1		
Gear Ratio Option 2	Static Effic	iency	0.348	0.370		
	Dynamic E	fficiency	0.450	0.470		
Max. Input	Gear Ratio	Option 1	3.75			
power (kW)	Gear Ratio	Option 2	1.125			
Start up torque	Gear Ratio	Option 1	36.4	68.5		
(Nm)	Gear Ratio	Option 2	19.1	35.8		

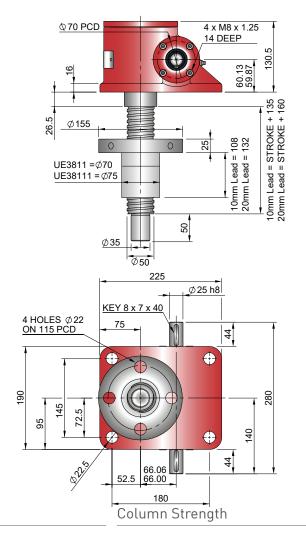

Model			EBT(EBR)			
Capacity	kN		10	00		
Lifting Screw	Lifting Screw (mm)					
Turn of worm for	Gear Ratio 1	6 Turn	7.5mm	15mm		
travel of lifting screw	Gear Ratio 2	24 Turn	10mm	20mm		
Maximum Thr	ough Torque (Nn	n)	347			
Lifting Screw I	Restraining Torq	ue (Nm)	181	340		
Worm Shaft M (N)	aximum Radial I	_oad	1000			
Maximum Inpu	ut Speed (rpm)		18	00		
Gear Case Ma	terial		SG	Iron		
Woight (kg)	troko - 150ro		EMT	24.3		
vvergrit (kg) - S	Weight (kg) - stroke = 150mm					
Woight (kg)	an avtra 25mm	stroko	EMT	0.58		
vveignt (kg) - p	er extra 25mm s	ытоке	EMR	0.36		

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

PO

WERJACKS


O



100kN Rotating

Upright EBR0100-U00

Inverted EBR0100-I00

1.2.1

Top Plate Clevis End Rod End Threaded End Closed Height "C Upright Upright Upright Inverted Upright Inverted Inverted Upright Inverted Inverted EBT0100 Stroke (mm) EBT0100 with Bellows Boots 10 & 20 10 & 20 Lead (mm) 10 & 20 10 & 20 10 & 20 1-300 301-600 601-1050 1051-1500

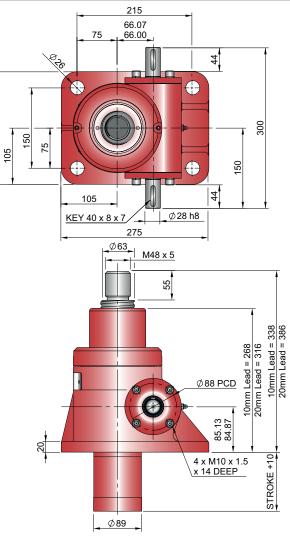
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 20mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x [E +5mm] thick.
- Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply + Control tapes fitted (increase outer diameter by 20mm approximately).
- For horizontal installations with than 450 mm of stroke, internal bod guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar.

7 Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.

100kN METRIC BALLSCREW JACK

Fixed Pinned

Fixed

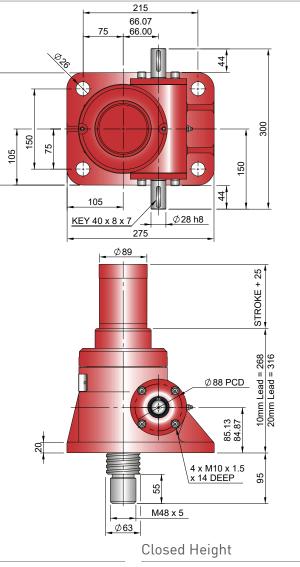

34 200kN Translating

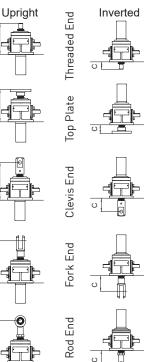
Upright EBT0200-U00

210

Inverted EBT0200-I00

210

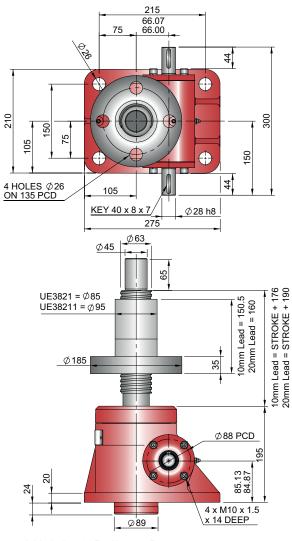


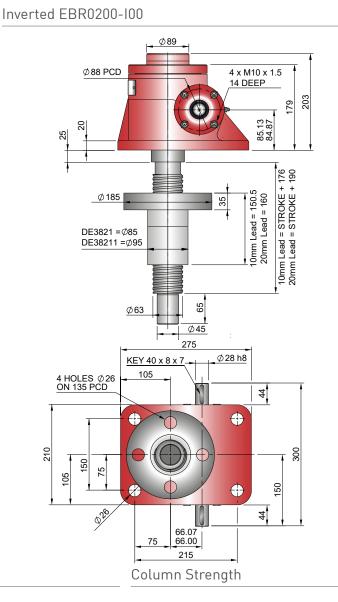

Model			EBT EBR	0200	
Capacity		kN)0	
	Diame	ter (mm)	6	3	
Lifting Screw	Lead	Option	1	2	
	Lead	mm	10	20	
	Gear Ratio		8	:1	
Gear Ratio Option 1	Static Effic	iency	0.529	0.571	
	Dynamic E	fficiency	0.631	0.665	
	Gear Ratio		24	::1	
Gear Ratio Option 2	Static Effic	iency	0.337	0.364	
	Dynamic E	fficiency	0.440	0.465	
Max. Input	Gear Ratio	Option 1	3.	75	
power (kW)	Gear Ratio	Option 2	1.125		
Start up torque	Gear Ratio	Option 1	75.2	139.4	
(Nm)	Gear Ratio	Option 2	39.4	72.9	

Model			EBT0200 EBR0200			
Capacity	kN		200			
Lifting Screw	Lifting Screw (mm)					
Turn of worm for	Gear Ratio 1	6 Turn	7.5mm	15mm		
travel of lifting screw	Gear Ratio 2	24 Turn	10mm	20mm		
Maximum Thr	ough Torque (Nn	n)	396			
Lifting Screw I	Restraining Torq	ue (Nm)	370	690		
Worm Shaft M (N)	aximum Radial I	_oad	16	00		
Maximum Inpu	ut Speed (rpm)		18	00		
Gear Case Ma	terial		Ste	eel		
Woight (kg)	troko - 150mm		EMT	42.4		
vveignt (kg) - S	stroke = 150mm		EMR	49.58		
Woight (kg)	or oxtra 25mm	stroko	EMT	0.84		
vvergrit (kg) - p	er extra 25mm s	SUUKE	EMR	0.52		
Note: All dimension	on in millimetres un	less other	vise stated			

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

POWERJACKS

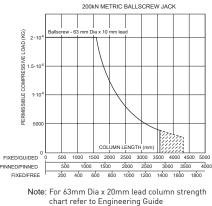


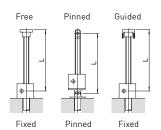


Upright EBR0200-U00

2

200kN Rotating

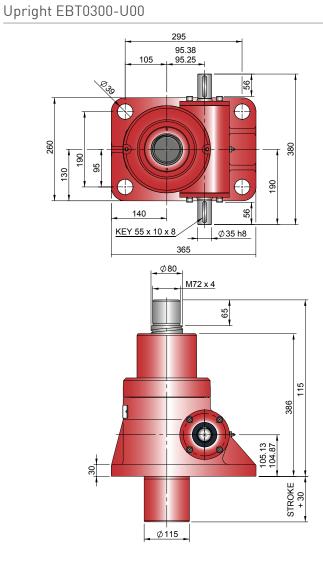




Closed Height & Bellows Boots

Closed		Threaded End Top Plate			ate	Clevis End			Fork End			Rod End			
Height "C"	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted
EBT0200	20	200 80 200 80 245 125 302 182					28	33	163						
Stroke (mm)	EBT0200 with Bellows Boots														
Lead (mm)	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20
1-300	348	396	140	348	396	140	393	441	185	483	531	275	470	518	262
301-600	358	406	150	358	406	150	403	451	195	493	541	285	480	528	272
601-1050	378	426	170	378	426	170	423	471	215	513	561	305	500	548	292
1051-1500	398	446	190	398	446	190	443	491	235	533	581	325	520	568	312

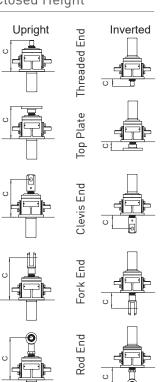
Note


- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 20mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick.
- Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply + Control tapes fitted (increase outer diameter by 20mm approximately). 3
- 4
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. 5

6 7 Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.

36 300kN Translating

Inverted EBT0300-100

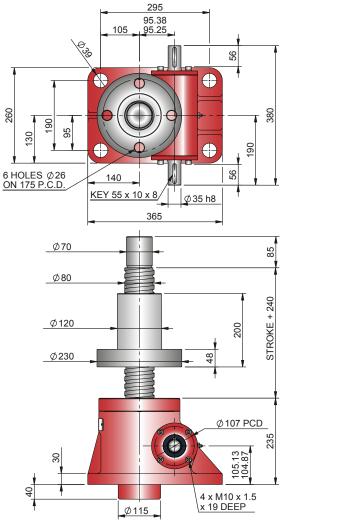

295 95.38 95.25 105 **3**3 56 \oplus 260 380 190 95 130 \oplus \bigcirc 190 56 140 KEY 55 x 10 x 8 Ø35 h8 365 Ø115 STROKE + 25 Ø107 PCD 360 .13 105. 104. 30 4 x M10 x 1.5 x 19 DEEP 115 65 M72 x 4 Ø95 **Closed Height**

Performance

Model			EBT0300 EBR0300		
Capacity		kN	300		
	Diame	ter (mm)	80		
Lifting Screw	Lead	Option	1		
	Leau	mm	20		
	Gear Ratio		10 2/3:1		
Gear Ratio Option 1	Static Effic	iency	0.492		
	Dynamic E	fficiency	0.595		
	Gear Ratio		32:1		
Gear Ratio Option 2	Static Effic	iency	0.278		
	Dynamic E	fficiency	0.371		
Max. Input	Gear Ratio	Option 1	6.0		
power (kW)	Gear Ratio	Option 2	1.9		
Start up torque at full load	Gear Ratio	Option 1	182		
(Nm)	Gear Ratio	Option 2	107.3		

Model				0300 0300	
Capacity	kN		30	00	
Lifting Screw	(mm)		2	0	
Turn of worm for	Gear Ratio 1	6 Turn	11.25mm		
travel of lifting screw	Gear Ratio 2	24 Turn	7.5mm		
Maximum Thr	ough Torque (Nn	n)	1440		
Lifting Screw	Restraining Torq	ue (Nm)	1030		
Worm Shaft M (N)	aximum Radial I	_oad	21	70	
Maximum Inp	ut Speed (rpm)		18	00	
Gear Case Ma	terial		Ste	eel	
Woight (kg)	stroke = 150mm		EMT	92.4	
weigin (kg) - S		EMR	113.78		
Woight (kg)	oer extra 25mm s	stroko	EMT	1.55	
weight (Kg) - F		SUOKE	EMR	1.13	

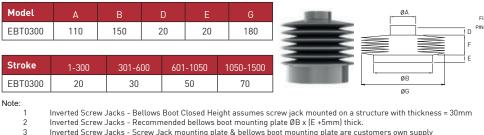
ote: All dimension in millimetres unless otherwise stated Designs subject to change without notice

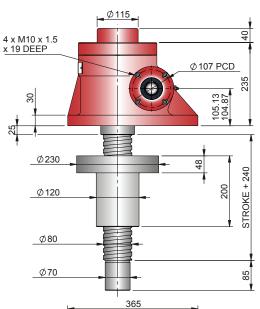

POWERJACKS

Upright EBR0300-U00

260

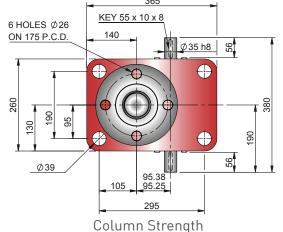
130

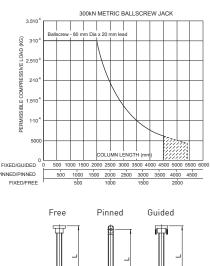

Inverted EBR0300-I00

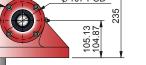

Closed Height & Bellows Boots

6

Closed	Threaded End		Top Plate		Clevi	s End	Fork	End	Rod End	
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EBT0300	325	115	325	115	365	155	148	98	150	70
Stroke (mm)		EBT0300 with Bellows Boots								
1-300	470	135	470	135	510	175	-	-	-	-
301-600	480	145	480	145	520	185	-	-	-	-
601-1050	500	165	500	165	540	205	-	-	-	-
1051-1500	520	185	520	185	560	225	-	-	-	-

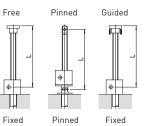



Inverted Screw Jacks - Screw Jack mounting plate & bellows boot mounting plate are customers own supply + Control tapes fitted (increase outer diameter by 20mm approximately). 4



E-Series - Ball Screw Jack

300kN Rotating



2

37

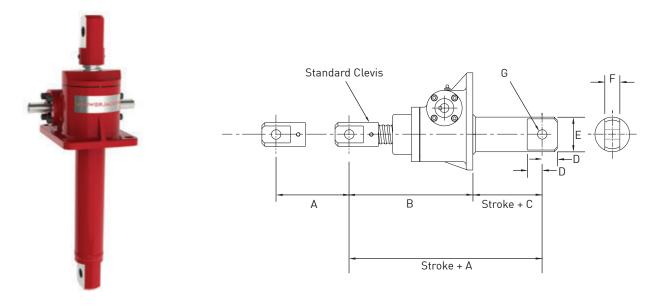
⁵

For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. 6 7

Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.

2

E-Series Ball Screw Jack


PERFORMANCE ENHANCED VARIANTS TO SOLVE SPECIFIC APPLICATION REQUIREMENTS

Variants

Double Clevis

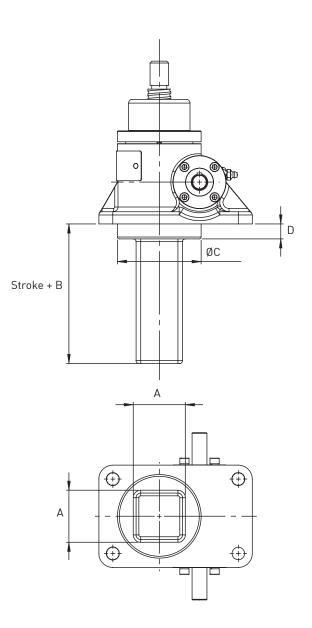
Model	EBT0010	EBT	0025	EBT	0050	EBT	0100	EBT	0200	EBT0300	EBT0500
Capacity	10	25	25	50	50	100	100	200	200	300	500
Lead Option	1	1	2	1	2	1	2	1	2	1	1
А		260	287	313	364	427	450	525	573		
В		202	229	245	296	299	322	386	434		L L
С	equest	58	58	68	68	128	128	139	139	uest	uest
D	Req	23	23	30	30	33	33	40	40	Req	Req
E	on F	48.3	48.3	60.3	60.3	73	73	102	102	on F	on F
F	ple	30	30	35	35	40	40	50	50	ole	ole
G	Available	16	16	20	20	22	22	30	30	Available	Available
Max Raise at Max Rated Load in Compression	Ava	280	200	600	560	658	588	769	621	Ava	Avé

Note

- 1. For other performance and dimension information refer to translating screw models.
- 2. All dimensions in millimetres unless otherwise stated.

Reduced Backlash Ball Screw Jacks

Metric Ball Screw Jacks can be provided with preloaded ball nuts to give reduced axial backlash as a high efficiency alternative to the metric machine screw anti-backlash option. Preloading on the ball nut is obtained by the "Interference Ball" method. By fitting Interference balls in the ball nut to obtain a diametrical interference fit and using the original track form, a four-point contact results. The anti-rotation device is available for translating ball screw models only. It is used only when the load to be moved (actuated) may rotate, i.e. the screw is unguided and does not prevent rotation.


The anti-rotation device consists of a square steel tube which guides the movement of a square aluminium bronze guide block fitted to the end of the ball screw. The guide block also acts as a stop nut.

Model	EBT0010	EBT0025	EBT0050	EBT0100	EBT0200	EBT0300	EBT0500
Capacity (kN)	10	25	50	100	200	300	500
А	AOR	50	70	AOR	AOR	AOR	AOR
В	AOR	50	60	AOR	AOR	AOR	AOR
С	AOR	90	115	AOR	AOR	AOR	AOR
D	AOR	16	20	AOR	AOR	AOR	AOR

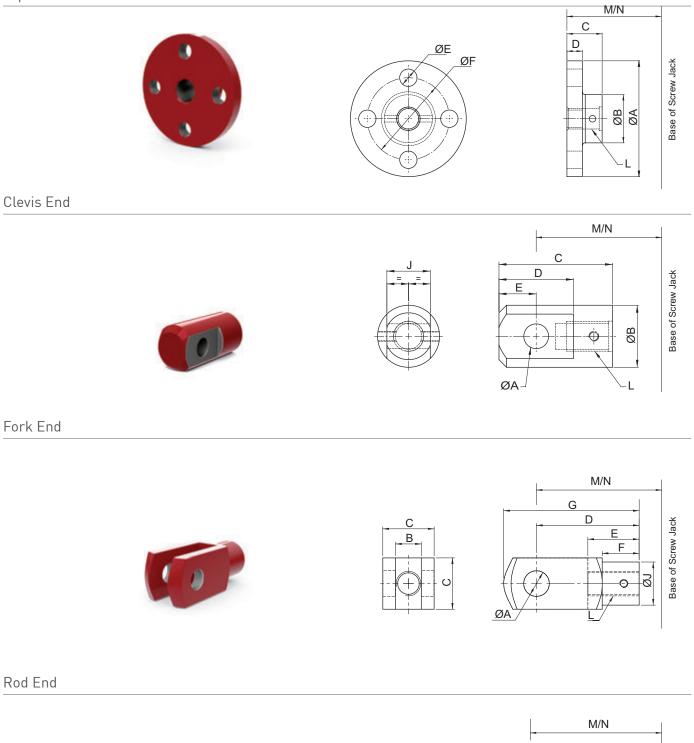
Note

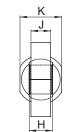
- 1. AOR = Application On Request, consult Power Jacks Ltd.
- 2. All dimensions in millimetres unless otherwise stated.

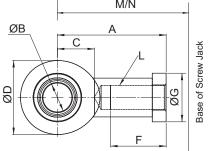
3

E-Series Screw Jack

ACCESSORIES FOR BALL SCREW JACKS






POWERJACKS

Top Plate

End Fittings

	Capacity	' (kN)	10	25	50	100	200	300	500
		ØA	80	100	120	150	170	240	280
	ØB 30		40	50	65	75	110	150	
		С	25	31.5	36.5	42	58	67	92
ate		D	10	12	16	20	25	30	35
p Pla	ØE x QTY 11 x 4		13.5 x 4	18 x 4	22 x 4	26 x 4	33 x 4	33 x 4	
Top	ØF (PCD)		55	70	85	110	120	170	215
		L	M12 x 1.75	M20 x 2.5	M24 x 3	M36 x 4	M48 x 5	M72 x 4	M100 x 4
	N#2	Upright	150	175	218	252	338	445	-
	IN"2	Inverted	45	55	65	80	95	115	-

	Сара	city (kN)	10	25	50	100	200	300	500
		ØA 12		16	20	22	30	45	60
	ØB 30		40	50	65	75	110	150	
		С	63	79.5	91.5	120	143	167	217
late		D	36	46	60	66	80	120	150
is Pl	E 18		18	23	30	33	40	60	75
Clevi		J	20	30	35	40	50	80	110
		L	M12 x 1.75	M20 x 2.5	M24 x 3	M36 x 4	M48 x 5	M72 x 4	M100 x 4
	N#2	Upright	170	200	243	297	383	485	-
	IN"2	Inverted	65	80	90	125	140	155	-

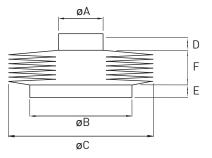
	Capa	city (kN)	10	25	50	100	200	300	500
		ØA	12	20	25	35	50		
		В	12	20	25	35	50		
		C 24		40	50	70	96		L.
		D	48	80	100	144	192	nes	nes
pu		E	24	40	50	72	96	Request	Request
rk E		F 18		30	36	54	73	uo	uo
For		G 62		105	132	188	265	Available	Available
		Ql	20	34	42	60	82	vail	vail
		L	M12 x 1.75	M20 x 2.5	M24 x 3	M36 x 4	M48 x 5	◄	<
	N#2	Upright	173	224	281	354	473		
	IN"2	Inverted	68	104	128	182	230		

	Сарас	city (kN)	10	25	50	100	200	300	500
		А	50	77	94	125	160		
	Ģ	ØВ	12	20	25	35	50		
		С	18	27	32	42	60		
	Q	ØD 34 53 64	64	82	112	est	est		
		F	23	40	48	60	68	enbe	enba
End	Ģ	ØG 22 35 42	58	75	on Request	on Request			
Rod		Н	10	16	20	25	35		
		J	8	13	17	21	30	Available	Available
		К	19	32	36	50	65	Ave	Ava
		L	M12 x 1.75	M20 x 1.5	M24 x 2	M36 x 3	M45 x 3		
	N1#2	Upright	175	220	275	335	440		
	N#2	Inverted	70	100	122	163	197		

Note

1. N = For Ball Screw Jacks, Standard Lead only.

Features

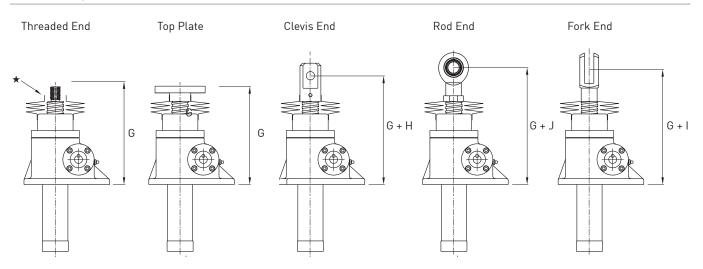

- Protects the screw from dust and dirt
- Guards against moisture and corrosive contaminants
- Helps maintain the proper lubrication
- Boots are made of P.V.C. coated nylon with sewn construction. Other materials are available for applications involving high temperatures, highly corrosive atmospheres and other special conditions.

Boot Dimensions

Model	А	В	С	D	Е
EBT0010	30	75	114	12	12
EBT0025	40	66	120	15	15
EBT0050	50	85	140	15	15
EBT0100	65	100	150	15	15
EBT0200	75	105	165	20	20

Model	А	В	С	D	Е			
EBT0300	110	150	180	20	20			
EBT0500	Available on Request							

Model	EBT0010	EBT0025	EBT0050	EBT0100	EBT0200	EBT0300
Stroke $0 \rightarrow 300$	16	20	20	20	20	20
Stroke $301 \rightarrow 600$	32	30	30	30	30	30
Stroke $601 \rightarrow 900$	-	-	45	-	-	-
Stroke $601 \rightarrow 1050$	56	50	-	50	50	50
Stroke 901 → 1050	-	-	50	-	-	-
Stroke 1051 → 1500	80	70	70	70	70	70

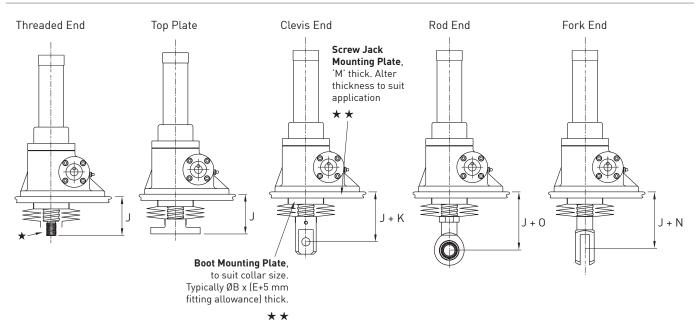

Note

- 1. F = Bellows boot minimum closed thickness
- 2. = Not applicable consult Power Jacks Ltd
- 3. t = Control tapes fitted (approximately 20 mm increase to outer diameter).
- 4. Supplied complete with a set of corrosion-resistant 'jubilee' clips (2) suitable for fitting over collar diameters.
- 5. For horizontal installation exceeding 450 mm of travel, internal boot guides are recommended.
- 6. Customers with threaded end screw jacks must provide a fixing for the unattached collar (\star) .
- 7. Bellows boots for rotating screw jacks consult Power Jacks Ltd.
- 8. For other sizes, strokes and materials please contact Power Jacks Ltd.
- 9. All dimensions in millimetres unless otherwise stated.
- 10. Dimensions subject to change without notice.
- 11. Screw Jack mounting plate and bellows boot mounting plate are usually all part of the customers superstructure (* *). For other options consult Power Jacks.

POWERJACKS

Upright Ball Screw Jack Bellows Boots 47

Closed Heights

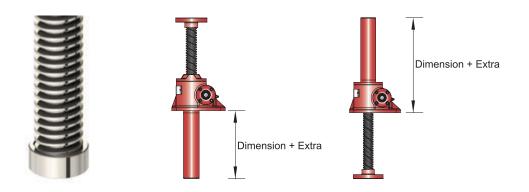


Closed Height for all Upright Metric Ball Screw Jacks

	Model	EBT0010	EBT	0025	EBT	0050	EBT	0100	EBT	0200	EBT0300
	Lead Option	1	1	2	1	2	1	2	1	1	1
	Stroke $0 \rightarrow 300$	166	180	200	230	270	255	285	348	396	470
	Stroke $301 \rightarrow 600$	182	190	210	240	280	265	295	358	406	480
G	Stroke $601 \rightarrow 900$	-	-	-	255	295	-	-	-	-	-
	Stroke $601 \rightarrow 1050$	206	210	230	-	-	285	315	378	426	500
	Stroke 901 \rightarrow 1050	-	-	-	260	300	-	-	-	-	-
	Stroke $1051 \rightarrow 1500$	230	230	250	280	320	305	335	378	446	520
н	Extra Closed Height for Clevis	20	25	25	25	25	45	45	45	45	40
I	Extra Closed Height for Fork	23	49	49	63	63	82	82	135	135	Request
J	Extra Closed Height for Rod End	43	60	60	72	72	98	98	122	122	Request

Inverted Ball Screw Jack Bellows Boots

Closed Heights

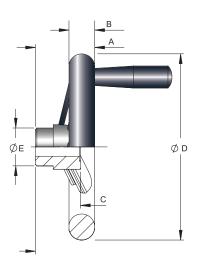

Closed Height for all Inverted Metric Ball Screw Jacks

	Model	EBT0010	EBT	0025	EBT	0050	EBT	0100	EBT	0200	EBT0300
	Lead Option	1	1	2	1	2	1	2	1	2	1
М	Mounting Plate	10	15	15	15	15	20	20	20	20	30
	Stroke $0 \rightarrow 300$	61	100	100	105	105	120	120	140	140	135
	Stroke $301 \rightarrow 600$	77	110	110	115	115	130	130	150	150	145
G	Stroke $601 \rightarrow 900$	-	-	-	130	130	-	-	-	-	-
	Stroke $601 \rightarrow 1050$	101	130	130	-	-	150	150	170	170	165
	Stroke 901 \rightarrow 1050	-	-	-	135	135	-	-	-	-	-
	Stroke $1051 \rightarrow 1500$				155	155	170	170	190	190	185
к	Extra Closed Height for Clevis	20	25	25	25	25	45	45	45	45	40
Ν	Extra Closed Height for Fork	23	49	49	63	63	82	82	135	135	Request
0	Extra Closed Height for Rod End	43	60	60	72	72	98	98	122	122	Request

49

Inverted Ball Screw Jack Bellows Boots

Stop Nut


Ball Screw Jack

Mastal	Extra	(mm)			
Model	Upright	Inverted			
EBT0010	On Request				
EBT0025	30	30			
EBT0050	57	57			
EBT0100	60	60			
EBT0200	56	56			
EBT0300	On Re	equest			
EBT0500	On Re	equest			

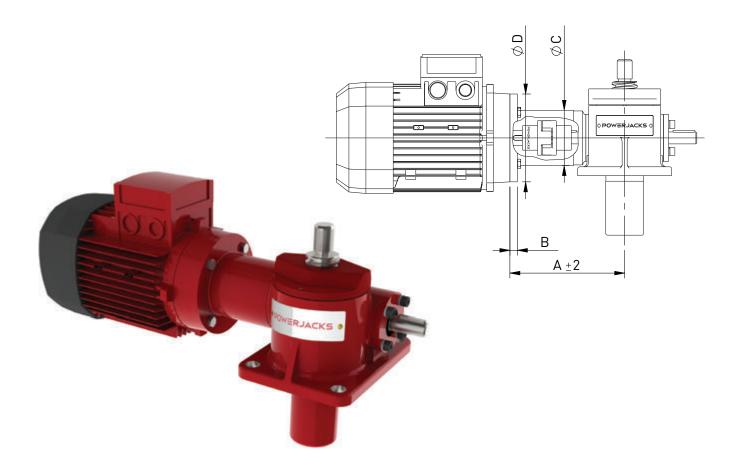
Note

These are full power stop nuts. They should only be used as an emergency stop safety feature.

Hand Wheels

Model	А	В	С	D	E	H7 Bore
HW 005	40	14	36	98	24	Ø10
HW 010	50	22	38	157	32	Ø14
HW 025	56	24	43	198	40	Ø16
HW 050	56	24	43	198	40	Ø19
HW 100	66	30	44	247	49	Ø25
HW 200	78	32	56	288	58	Ø28
HW 300	108	40	77	375	58	Ø35
HW 500	108	40	77	375	58	Ø40

Notes:


- 1. Material: Polished aluminium casting and rotating handle
- 2. Bored and keyed to BS4235 Part 1
- 3. All dimensions in millimetres unless otherwise stated
- 4. Other types of hand wheels are available on request. Consult Power Jacks.

50 Motor Adaptor

- Standard adapters for 25 kN 200 kN metric machine screw and ball screw jacks
- Designed for standard IEC frame sizes
- Allows direct motor coupling on either side of the screw jack input shaft
- Complete with drive coupling and mounting hardware

Note

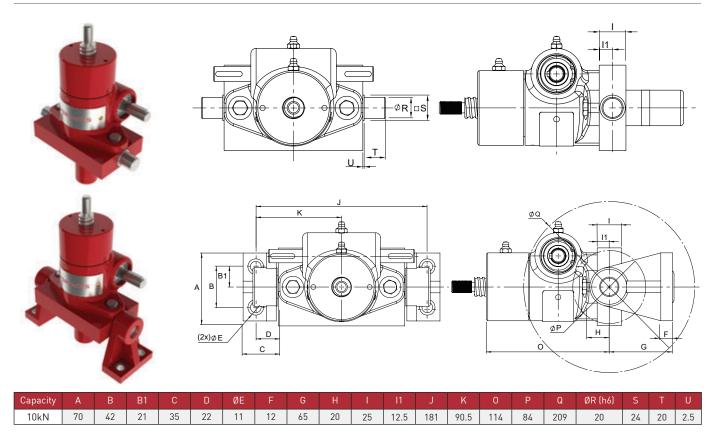
• When direct coupling a motor to a screw jack, it is necessary to match motor power to screw jack load so the motor does not exceed the maximum power for the screw jack gear set.

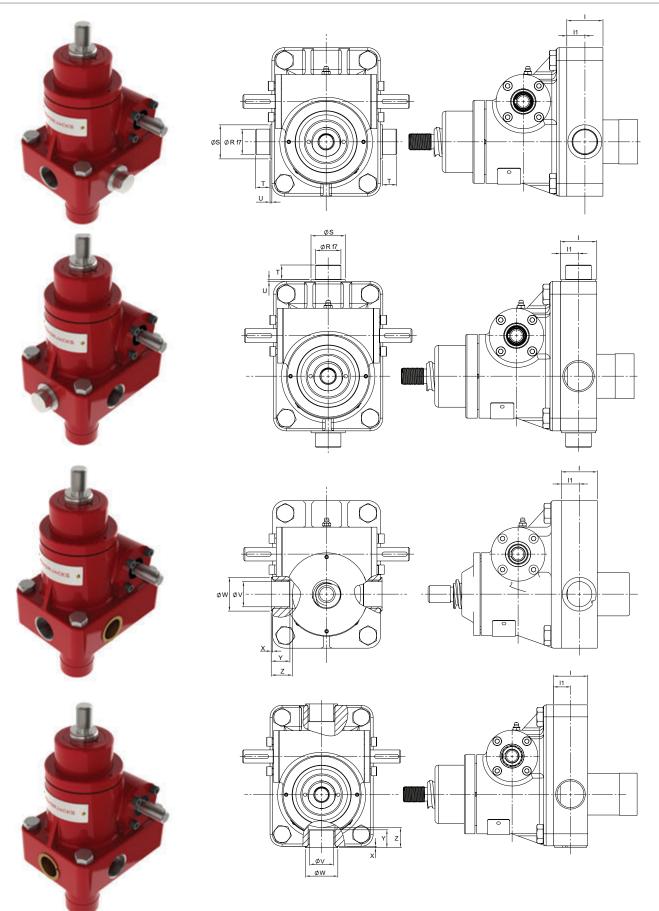
Matar	Adamtana		Capacity (kN)														
Motor	Adapters		2	5			50			100				200			
Frame Size	Motor Mounting	А	В	ØC	ØD	А	В	ØC	ØD	А	В	ØC	ØD	А	В	ØC	ØD
71	B14 C105	142.5	10	71	105	-	-	-	-	-	-	-	-	-	-	-	-
80	B14 C120	146.5	12	81	120	171	12	86	120	-	-	-	-	-	-	-	-
90	B14 C140	157.5	12	81	140	183	12	88	140	208	12	98	140	218	12	125	140
100	B14 C160	168	12	81	160	193	12	88	160	218	12	98	160	228	12	125	160
112	B14 C190	168	12	81	160	193	12	88	160	218	12	98	160	228	12	125	160
132	B14 C200	-	-	-	-	218	14	95	200	240	14	98	200	250	14	125	200

Notes:

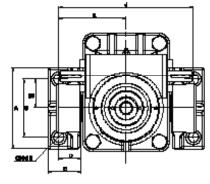
- 1. Motor Adapters for IEC Frames with B5 Flange mounts available on request.
- 2. Motor Adapters for screw jacks of capacities 300kN and above are available on request.
- 3. Adapters for geared motors are available on request for all types of geared motor or gear head.
- 4. Motor Adapters for Servo Motors available on request.
- 5. Motor Adapters for NEMA Frame motors are available on request.
- 6. All dimensions in millimetres unless otherwise stated.
- 7. Dimensions subject to change without notice.

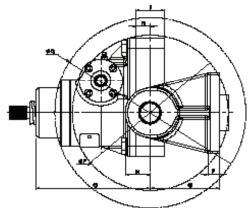
POWERJACKS

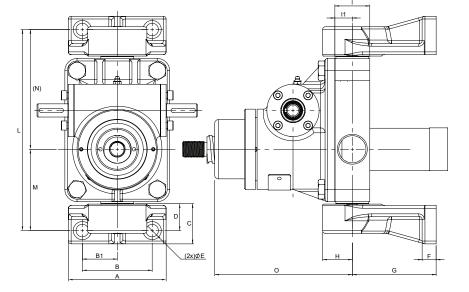

Base mounted trunnions are an ideal bolt-on accessory for a screw jack to add a pivot point to the gearbox of the screw jack. These base mounted trunnions can be used for both translating and rotating screw jacks with any lifting screw type.


Available in both male or female designs with the option to add standard trunnion feet. Most designs offer trunnions in 2 mounting positions.

If you need trunnions fitted at another position on a screw jack then please contact us as we can provide customised trunnion mounts to suit your exact applications needs


10kN Trunnion Mounts

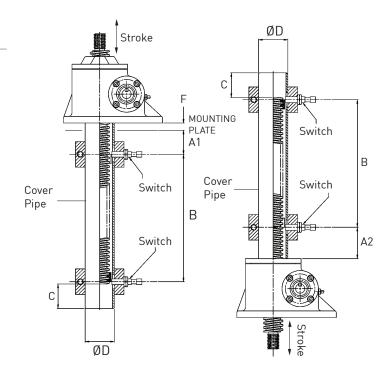



25kN to 500kN Trunnion Mounts

Capacity	А	В	B1	С	D	ØE	F	G	Н	I	11	J	К	L
25kN	100	70	35	40	26	13.5	14	85	30	36	18	171	85.5	226
50kN	140	100	50	55	35.5	18	20	120	42.5	50	25	233	116.5	288
100kN	170	120	60	70	43.5	22	25	130	47.5	60	30	292	146	327
200kN	220	150	75	90	61	33	25	170	59	85	42.5	344	172	409
300kN	280	190	95	120	80	39	35	180	60	100	45	434	217	539
500kN	360	250	125	155	100	51	40	200	70	120	55	514	257	749

Capacity	М	N	0	Р	Q	ØR (f7)	S	Т	U	V	W	Х	Y	Z
25kN	95.5	130.5	152	208	248	25	35	20	2.5	25	35	1.5	16.5	26
50kN	116.5	171.5	197	270	332	35	47	20	2.5	35	47	2	26	39
100kN	126	201	227	312	361	45	58	35	5	45	74	2	32	40
200kN	172	237	311	361	500	60	75	45	5	60	78	2	42	45
300kN	227	312	405	473	578	70	85	70	6	70	90	3	53	58
500kN	332	417	Request	643	681	80	95	70	6	80	110	2	62	62

Notes:


Dimension "O" is for units with Option-1 lead only. For Option-2 lead units add extra height.

54 Limit Switches on Cover Pipe

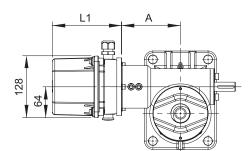
POWERJACKS

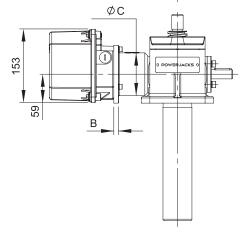
End of Travel Proximity Sensors Sensor Kit

- Inductive Proximity Sensors as standard, others available on request.
- No contact so no wearing parts.
- 2 wire sensor for either Normally Closed (NC) or Normally Open (NO) switching.
- Sensor has rugged one-piece metal housing.
- Optical setting aid with 2 LED colour settings:- Red LED indicates just in sensing range. Yellow LED only indicates within 80% safe sensing range.
- M12 plug in connection for fast change-ability.
- M12 sockets available straight or angled with 5-m cable (other cable lengths available on request).
- Full 360° visibility for switching with 4 yellow LED's at 90° offset.
- Sensor kit includes sensor, mounting ring, target ring and modification to screw jacks cover pipe.

		Upr	ight & Inve	rted Machi	ne Screw J	lacks		
Capacity Rating (kN)	Switch Dia (mm)	A1 (mm)	A2 (mm)	B (mm)	C (mm)	D (Ømm)	F (mm)	Switch Adjustment (mm)
10	8	40	40	Stroke + 20	40	33.4	10	±5
25	12	35	60	Stroke + 15	60	48	15	±5
50	12	40	70	Stroke + 25	65	60	15	±5
100	12	55	85	Stroke + 25	77	73	20	±10
200	12	65	80	Stroke +25	77	89	20	±10
300	18	65	80	Stroke +40	96	141	30	±10
500	18	95	95	Stroke +40	108	168	30	±15

1. All dimensions in mm unless otherwise stated.


End of Travel Electro-Mechanical Switches


The screw jacks can be fitted with electro-mechanical limit switches in a similar design. For dimensions please consult Power Jacks Ltd.

Rotary limit switches can be used as end of travel limit switches, with the option of intermediate switches as well. These units are mounted onto a screw jacks free worm shaft and offer an alternative where bottom pipe mounted limit switches are not possible e.g. rotating screw jacks. Up to 8 limit switches can be accommodated in one enclosure (IP66). Operating temperature -40°C to +80°C.

Rotary Limit Switch - RLS

More RLS-51 rotary limit switch details in System Components section of design guide

	Screw Jack Capacity (kN)								
		2	5		50				
Adapter Mounting	Std. A B ØC				Std. Part	А	В	ØC	
B5	×	-	-	-	×	-	-	-	
B14	~	117	10	70	\checkmark	133	10	89	

	Screw Jack Capacity (kN)							
		10	00	200				
Adapter Mounting	Std. Part	А	В	ØC	Std. Part	А	В	ØC
B5	\checkmark	150	13	98	\checkmark	174	13	125
B14	×	-	-	-	×	-	-	-

The mounting kit includes the flexible coupling and drive adapter.

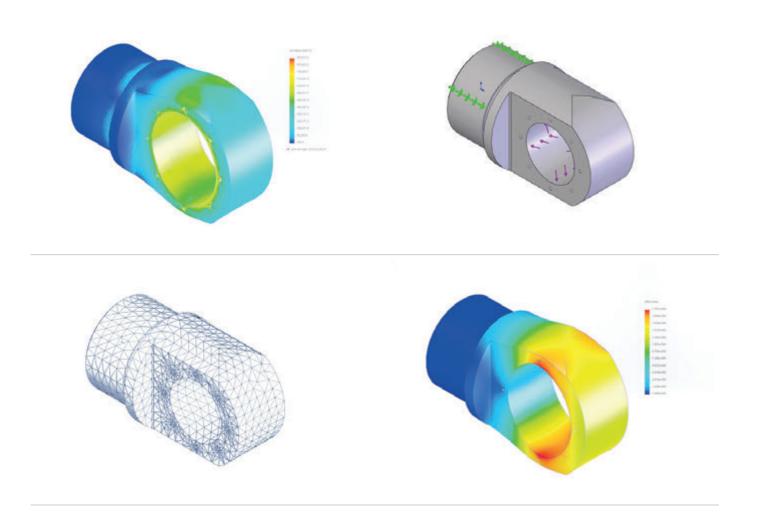
		Usable revs.		1 rev. of the	Change - over		Min drive shaft		L1 (I	mm)	
Gear Size	Usable revs. selected	theoretical with 15° cam	Gear Ratio	drive shaft - corresp. to an ang. motion of	contact reset rev. at driving	Max drive speed (RPM)	speed (only for change - over		Limit S	witches	
		discs		cam disc =°	shaft	(IXE M)	contact)	2			8
	4.1	4.16	4.285	84	0.00714	1000	0.67				
1	6.5	6.88	7.083	50.8	0.0118	1200	1.1	132	132	157	157
	11	11.23	11.56	31.14	0.0193	1500	1.8				
	17.5	17.84	18.361	19.6	0.0306	1800	2.9				
2	29	29.5	30.35	11.86	0.0505	1800	4.7	132	132	157	182
	48	48.13	49.538	7.27	0.0825	1800	7.7				
	75	76.45	78.678	4.57	0.131	1800	12.2				
3	125	126.39	130.054	2.77	0.2166	1800	20.2	132	132	157	182
	205	206.26	212.272	1.69	0.3536	1800	33				
	323	327.6	337.135	1.06	0.5616	1800	52				
4	540	541.5	557.284	0.65	0.9284	1800	87	132	157	182	207
	880	883.8	909.59	0.4	1.515	1800	141				
	1384	1403.7	1444.62	0.25	2.406	1800	224				
5	2288	2320.2	2387.96	0.15	3.978	1800	371	132	157	182	207
	3735	3787.1	3897.58	0.09	6.493	1800	606				
	5900	6014.77	6190.204	0.06	10.313	1800	*				
6	9800	9942.2	10232.407	0.04	17.047	1800	*	157	157	182	207
	16000	16227.6	16701.17	0.02	27.824	1800	*				

Note

1. More than 8 contacts on request.

2. Dimensions with more than 8 contacts and with special executions, eg. potentiometer, on request.

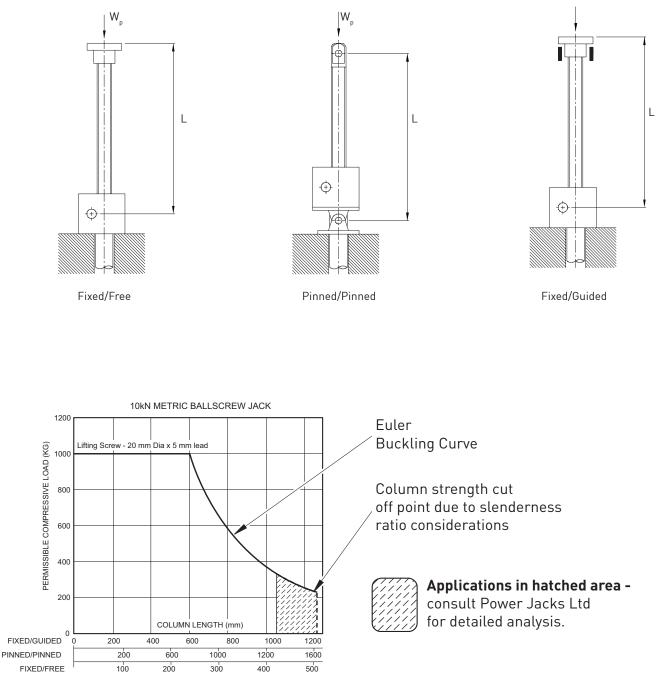
3. RLS-51 B5 Flange thickness = 4mm.

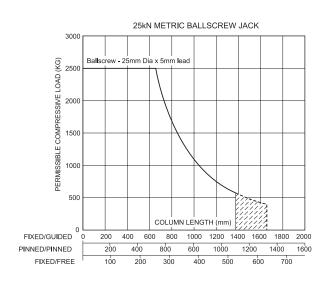

4. Options available include Anti-condensation heaters, potentiometer, pulse transmitter, encoder, aluminium housing and VBG-70 STAGE technology.

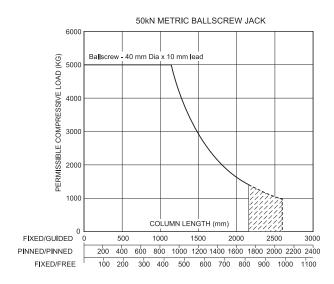
5. Mounting kits available for all screw jacks. For those not listed, consult Power Jacks.

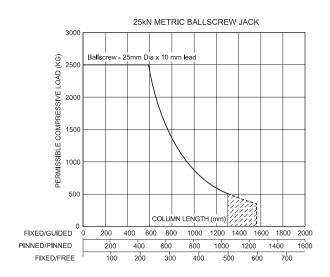
4

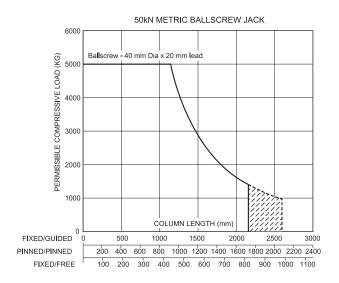
ENGINEERING GUIDE

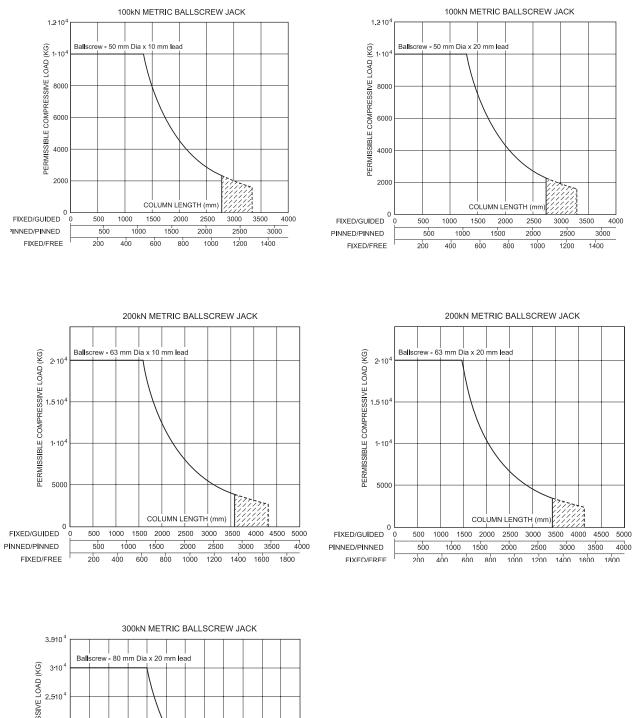

USEFUL PERFORMANCE & OPERATIONAL DETAIL FOR SCREW JACKS




Important Notes

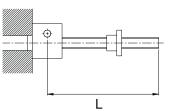

- 1. All charts are rated for industrial cargo with a safety factor of 3.5.
- For human cargo a safety factor of 5 is recommended. To alter the permissible compressive load (WP) for human cargo multiply the load selected from the chart by 0.7 e.g. W_{PHC} = W_P *0.7.

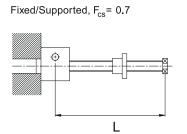

Column Length Correction Factors, F_{cb}

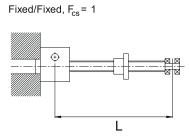


60 Ball Screw Jack Column Strength Charts

POWERJACKS




PERMISSIBLE COMPRESSIVE LOAD (KG) 2·10⁴ 1.510⁴ 1.10 5000 COLUMN LENGTH (mm) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 FIXED/GUIDED PINNED/PINNED 1000 1500 2000 2500 3000 3500 4000 4500 500 FIXED/FREE 500 1500 1000 2000


POWERJACKS

Critical Screw Speed Factors, F_{cs}

Fixed/Free, F_{cs} = 0.15

Ball Screw Critical Screw Speed (Shaft Whirling)

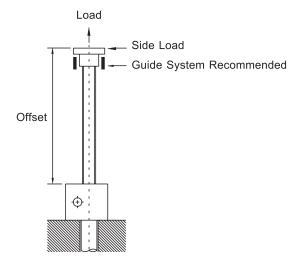
Based on both ends fixed and 80% of the critical speed.

Screw Jack Key Torque

The key torque (restraining torque) is caused by the tendency of the lifting screw to rotate. It is a function of the screw lead, screw efficiency and the load. It is not affected by the screw jack unit gear ratio.

Note: The values below are given at rated load. For a smaller load reduce the key torque in direct proportion.

Ball Screw Jacks


Capacity (kN)	Screw Diam (mm)	Lead (mm)	Key Torque (Nm)					
10	20	0.005	9					
10	-	-	-					
25	25	0.005	23					
25	25	0.01	43					
50	40	0.01	88					
50	40	0.02	167					
100	50	0.01	181					
100	50	0.02	340					
200	63	0.01	370					
200	63	0.02	690					
300	80	0.02	1030					
500		On Request						

Maximum Jack Side Load Ratings with Full Jack Rated Load in Tension

Ball Screw Jacks

Ball Screw Jack											
Capacity (kN)	10	25	25	50	50	100	100	200	200	300	500
Ball Screw Lead (mm)	5	5	10	10	20	10	20	10	20	20	*
Max. Side Load 300mm Offset (N)	105	195	195	980	980	1570	1570	2060	2060	4340	*

*Consult Power Jacks.

To calculate maximum side load for different raises for screw jacks in tension under full rated load use the following formula to modify the above tabulated values.

Max Side Load Rating Tabulated x Stated Offset

Permissable Max. Side Load = for Actual Offset

Actual Offset

Note

The correct units must be used

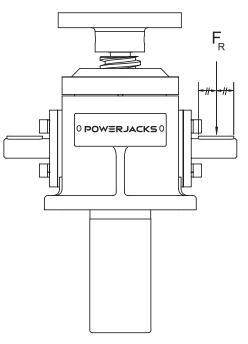
Important Notes

- 1. These figures are for Screw Jacks in tension only.
- 2. The figures given above are permissible side load ratings, however, we recommend that all side loads be carried by guides in your arrangement and not by the screw and nut.
- 3. Life of the lifting screw and nut will be adversely affected the more side load they see.
- 4. These figures are based on acceptable stresses in the lifting screw and not on lifting screw deflection.
- 5. For maximum side load ratings for screw jacks in compression consult Power Jacks Ltd.
- 6. For precise calculations for your application consult Power Jacks Ltd.

POWERJACKS

For applications where a screw jack is belt/chain driven, a calculation must be made to determine the radial force (F_R) and compared to the allowable radial load exerted on the worm shaft, that must not exceed those tabulated below. The values below are maximum values for the screw jacks at rated load regardless of worm speed or load direction and the radial load applied midway along the key of the worm shaft. For all applications the sprocket, gear etc. Should be positioned as close as possible to the screw jack housing in order to reduce bearing loads and shaft stresses and to prolong life.

Radial Force,
$$F_{R} = \frac{2000 \times T \times K}{D}$$


Where

F_B = Radial Load (N)

- **T** = Torque applied to the screw jacks input shaft (Nm)
- **K** = Factor from table below
- **D** = PCD in mm of gear, sprocket

Transmission Element	Factor K
Chain sprocket	1
Gears (spur or helical pinion)	1.25
V-Belt pulley	1.5
Flatbelt pulley	2.0

Ball Screw Jack				
Capacity (kN)	25	50	100	200
Radial Load (N)	440	1100	1200	1600

Ball Screw Jacks

Component	Normal Backlash	
Ball Track and Nut	$0.05 \text{mm} \rightarrow 0.15 \text{mm} (0.002" \rightarrow 0.006")$	
Load Bearings	$0.00 \text{mm} \rightarrow 0.03 \text{mm} (0.000" \rightarrow 0.003")$	
Total	0.05mm → 0.18mm (0.0002" → 0.007")	

Note

- 1. For exact backlash ratings for an individual unit consult Power Jacks.
- 2. Ball nuts can be supplied with zero backlash or with adjustable backlash via a special twin nut assembly (twin nut assembly for rotating screw units only). Consult Power Jacks for details.
- 3. Altering the load bearings preload to eliminate bearing play can reduce axial play.
- 4. There is no Anti-Backlash nut feature for the gear sets of these screw jacks.

Pitch Deviation of Lifting Screw

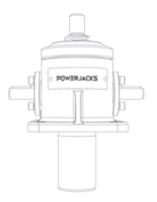
Lifting Screw Pitch Deviation	
Machine Screw	0.05mm → 0.25mm per 300mm
Ball Screw	0.025mm \rightarrow 0.050mm per 300mm (DIN Class 5.7)

Note

- 1. Pitch deviation is cumulative and **NOT** detrimental to the operation of the Screw Jack
- 2. The Lifting screws are manufactured from material with a straightness tolerance of 0.2 mm per metre
- 3. Pitch deviation is related to the cutting machines tolerance and the material used.

Operation

POWERJACKS



How a Rotating Screw Jack Works

The rotation of the worm shaft causes the worm gear to rotate. For rotating screw jacks the lead screw is fixed to the worm gear and they rotate at the same speed. The lifting nut moves along the lead screw. As the worm gear turns, the friction forces on the screw thread act to turn the nut also. The greater the load on the screw jack unit, the greater the tendency of the nut to turn. If the nut turns with the screw, it will not raise the load. Therefore the nut needs to be fixed to a structure to prevent rotation. The restraining torque required for the structure, also known as the "lead screw key torque" can be found on the product performance tables in this catalogue or requested from Power Jacks.

How a Translating Screw Jack Works

The rotation of the worm shaft causes the worm gear to rotate. For translating screw jacks the worm gear is threaded to accommodate the lead screw thread. The lead screw translates through the gear. As the worm gear turns, the friction forces on the screw thread act to turn the screw also. The greater the load on the screw jack unit, the greater the tendency of the screw to turn. If the screw turns with the nut (worm gear), it will not raise the load. In those cases where a single unit is used, and where the load cannot be restrained from turning, it is necessary to use a screw jack with an anti-rotation mechanism (keyed screw jack). Lead screw key torque (refer to the product performance tables in this catalogue or request from Power Jacks) must be checked as excessively heavy unguided loads could break the Anti-rotation mechanism (key).

Anti-Backlash Screw Jack - When To Use

For reduced axial backlash of the lead screw in the screw jack select a model with the "Anti-Backlash" mechanism. This is typically used when the load direction changes from tension to compression and minimal axial backlash is required. This design is only available for translating screw jacks. It can be combined with Anti-Rotation mechanism as well.

Input Torque Required for a Screw Jack

The input torque for a single screw jack depends on the load, the worm gear ratio, type of screw (machine screw, ball screw or roller screw) and the pitch of the lead screw. Torque values are listed in the individual product specification charts based on capacity loads. For loads from 25% to 100% of screw jack model capacity, torque requirements are approximately proportional to the load.

Note

The input torque, as well as the efficiency and side load ratings, is the same for both translating screw and rotating screw jacks.

Maximum Input Power & Speed for a Screw Jack

The input power to the screw jacks should not exceed the power rating shown in the specifications table. Maximum input speed in rpm (revolutions per minute) to a screw jacks worm shaft should not exceed 1800 rpm for C & E-Series screw jacks.

Efficiency of a Screw Jack

Screw Jack model efficiencies are listed in the individual product specification charts.

Expected Life of a Screw Jack

The life expectancy of a screw jacks lead screw, bearings, nut and worm gear set varies considerably due to the extent of lubrication, abrasive or chemical action, overloading, excessive heat, improper maintenance, etc. For detailed life calculations, consult Power Jacks.

Screw Jack with Anti-Rotation (Keyed) Mechanism

This design is only available for translating screw jacks. If the structure/object connected to the lead screw is not prevented from rotating or the lead screw is not always in contact with the structure then a screw jack with an "Anti-Rotation" mechanism (keyed) should be used.

Standard Screw Jacks - How To Prevent The Load from Rotating

For multiple screw jack systems, fix the lead screw end fittings (e.g. top plate or clevis) to the common member being lifted by all the units. For single screw jack applications, bolt the lead screw end fitting (e.g. top plate or clevis) to the load and ensure the load is guided to prevent rotation.

A guided load is always recommended to ensure that the screw jack does not receive any side load and so guidance can be scaled suitably for the load without altering the screw jack design unnecessarily. Note that an external guidance system can provide a higher restraining "key" torque than compared to an anti-rotation mechanism in a screw jack.

Self-Locking of Screw Jacks

Screw Jacks with 24:1 or higher gear ratios are considered self-locking in most cases. Consult Power Jacks for a recommendation specific to your application.

All screw jacks with multi-start lifting screws are considered not to be self-locking.

All ball screw and roller screw jacks are considered <u>not</u> to be self-locking.

Screw Jacks considered not self-locking will require a brake or other holding device.

Shock Loads on a Screw Jack

Shock loads should be eliminated or reduced to a minimum, if they cannot be avoided, the screw jack model selected should be rated at twice the required static load.

For severe shock load applications, the load bearings can be replaced with heat-treated steel thrust rings which is an option available from Power Jacks. Note this will increase the input torque by approximately 100%.

Column Strength of the Screw Jack

Column strength of a screw is determined by the relationship between the screw length and its diameter. For column strength charts consult product literature or Power Jacks.

Side Loads on a Screw Jack

Screw jacks are designed primarily to move and position loads and any side loads (loads not acting axially on lead screw) should be avoided. The units will withstand some side loads, depending on the diameter of the lifting screw and the extended length of the lifting screw. Where side loads are present, the loads should be guided and the guides, rather than the screw jacks, should take the side loads - particularly when long raises are involved. Even a small side load can exert great force on the housings and bearings and increase the operating torque and reduce the life expectancy.

Allowable Duty Cycle of Screw Jack

Because of the efficiency of conventional worm gear screw jacks, the duty cycle is intermittent at rated load. At reduced loading, the duty cycle may be increased. Ball screw jacks are more efficient than machine screw jacks and so can provide a higher duty cycle. In addition Power Jacks have special designs for high duty cycle screw jacks. For detailed analysis consult Power Jacks Ltd.

Maximum Operating Temperatures For E-Series Screw Jack

Normal operation at ambient temperatures of up to 90°C. Operations above 90°C will require special lubricants. For temperatures above 90°C, the life of even special lubricants is limited. Therefore consult Power Jacks on your application. For temperatures above 90°C, advise Power Jacks of full particulars of the duration of such temperatures. Power Jacks suggest that a lubricant manufacturer be consulted for type of grease and lubrication schedule. As a general rule, the screw jack unit should be shielded to keep ambient temperatures to 90°C or less.

Minimum Temperature For E-Series Screw Jacks

With the standard lubricant and materials of construction, the screw jacks are suitable for use at sustained temperatures of -20°C. Below -20°C, low temperature lubricant should be used and no shock loads are present. Power Jacks application engineers must be consulted in these instances for a recommendation. Screw Jacks with standard material of construction and lubrication may be safely stored at temperatures as low as -55°C.

Thermal / Heat Build-Up in a Screw Jack as it is operated

The duty cycle, the length of the screw, the magnitude of the load, and the efficiency of the screw jack all have a direct influence on the amount of heat generated within the screw jack. Long lifts can cause serious overheating. Note that Power Jacks have special designs with higher thermal capacities than conventional worm gear screw jacks (consult Power Jacks for more details).

Screw Jacks to Pivot a Load

A screw jack can be built to pivot a load by two methods:

1. Double Clevis Screw Jack

The screw jack can be furnished with a clevis at both ends (commonly referred to as a double clevis screw jack). The bottom clevis is welded to the bottom end of an extra strong cover pipe, which is fitted to the base of the screw jack. This cover pipe still performs its primary function of encasing the lifting screw in its retracted portion. The clevis ends can be replaced with other pivot options such as Fork End or Rod End.

2. Clevis - Trunnion Mounting

The screw jack is fitted with the pivot end fitting (e.g. Clevis, Fork or Rod End) on the lead screw and a trunnion mount adapter is bolted to the screw jacks base plate.

The design of the structure in which these types of screw jacks are to be used must be constructed so that screw jack can pivot at both ends. Use only direct compression or tension loads, thereby eliminating side load conditions.

Corrosion Resistant Properties

Screw Jacks can be supplied with alternative materials and/or paint specifications for high corrosive areas. These options include stainless steel, chrome plating, electro-nickel plating, epoxy paint, etc. Check the unit specification is suitable before installation.

Using Screw Jacks within a Rigid Structure or Press

Power Jacks recommend that the screw jack selected has a greater capacity than the rated capacity of the press or of the load capacity of the structure. We also recommend that a torque clutch or similar device be used to prevent overloading of the screw jack unit. Unless these precautions are taken, it is possible to overload the screw jack without realising it.

Screw Jack Drift after Drive Motor is Switched Off

The screw jack will drift after the motor drive is switched off unless a brake of sufficient capacity is used to prevent it. The amount of drift will depend upon the load on the screw jack and the inertia of the rotor in the motor.

For machine screw jacks with no load, the amount of drift will depend upon the size and speed of the motor. For example, a 1500 RPM input directly connected to a screw jack without a load will give on average 35mm to 60mm of drift; a 1000 RPM input will give about 1/2 as much drift. Note that the drift varies as the square of the velocity (RPM). The drift of the screw jacks screw can be controlled by using a magnetic brake on the motor. Variations of drift will also be seen if the motor drives the screw jack via a reduction gearbox.

Screw Jacks Operation where Vibration is Present

Screw Jacks will operate in areas with vibration, however the vibration may cause the lead screw to "creep" or "inch" under load. For applications involving slight vibration, select the higher of the worm gear ratios. If considerable vibration is present, use a motor equipped with a magnetic brake, which will prevent the screw jack from creep and/or back-driving.

Use of Screw Jacks Fitted With Emergency Stop Disc

To prevent over travel of the lead screw, a stop disc or nut can be fitted to a screw jack that is hand operated. It should not be used as a full power stop.

Use of Screw Jacks Fitted With Emergency Stop Nut

For motor driven units, it is possible for the full capacity of the screw jack or even a greater force (depending on the power of the motor) to be applied against the stop. These stops are called "full power stop nuts". They must only be used as an emergency device and if such a condition occurs, an assessment made to discover why it happened in order to carry out preventative action. If the full power stop nut is used at full load in an emergency it might be driven into the unit jamming so tightly that it must be disassembled in order to free it.

It is recommended that external stops are fitted where possible, however they must only be used as a last resort (Note - limit switches are one possible solution to constrain screw jack movement safely - consult Power Jacks for system advice). Under ideal conditions where a slip clutch or torque limiting device is used, a stop pin or stop nut may be used - but Power Jacks should be consulted.

Screw Jack System Arrangements

Perhaps the greatest single advantage of Power Jacks screw jacks is that they can be linked together mechanically, to lift, lower, move or position in unison. Typical mechanical system arrangements link 2, 4, 6 or 8 screw jacks together and are driven by one motor. As an alternative, screw jacks can be individually driven by electric motors and with suitable feedback devices, such as encoders, be synchronised electronically by a control system.

Connecting Screw Jacks in Series

The number of screw jacks that can be connected in series is limited by input torque requirements on the first worm shaft in the line. For the C & E-Series the torque on the worm shaft of the first screw jack should not exceed 300% of its rated full load torque (this does not include the 200kN screw jacks which are rated at 150%).

Efficiency of a Multiple Screw Jack System

In addition to individual device efficiencies, the efficiency of the screw jack arrangement must be taken into consideration. The arrangement efficiency allows for misalignment due to slight deformation of the structure under load, for the losses in couplings, bearings, and for a normal amount of misalignment in positioning the screw jacks and gearboxes. For efficiency values consult Power Jacks product literature or engineers.

Number of Screw Jacks in System	2	3	4	6-8
Jacking System Efficiency	0.95	0.90	0.85	0.80

Screw Jack Fitted with 3rd Party Accessories

If your screw jack is fitted with a device not manufactured by Power Jacks then please consult the provided manual for this device.

Installation and Maintenance Tips

The following installation and maintenance tips are for the C & E-Series, Metric machine screw and ball screw jacks models. General care should be taken to ensure that equipment is sufficient to handle the load.

- 1. The structure on which the screw jack unit is mounted should have ample strength to carry the maximum load, and be rigid enough to prevent undue deflection or distortion of the screw jack unit supporting members.
- 2. It is essential that the screw jack be carefully aligned during installation so that the lifting screws are vertically true and the connecting shafts are exactly in line with the worm shafts. After the screw jack, shafting, and gear boxes are coupled together, it should be possible to turn the main drive shaft by hand. If there are no signs of binding or misalignment, the jacking system is then ready for normal operation.
- 3. The screw jack should have a greater stroke than is needed in the screw jack installation. If it is necessary to operate the screw jack at the extreme limits of travel, it should be done with caution.

CAUTION: Do not allow screw travel below catalogue closed height of the screw jack or serious damage to internal mechanism may result. Refer to table specifications for closed height of respective units.

- 4. The input power should not exceed the power rating shown in the specification table. Maximum RPM should not exceed 1800.
- 5. The lifting screw should not be permitted to accumulate dust and grit on the threads. If possible, lifting screws should be returned to closed position when not in use.
- 6. The ball screws in the ball screw jacks should be checked periodically for excessive backlash and spalling of raceways. A periodic check of backlash of the lifting screw thread is recommended to check wear of the worm gear internal threads on the machine screw jack models. Backlash in excess of 50% of the thread thickness indicates the need to replace the worm gear.
- 7. Unless otherwise specified, screw jacks are shipped packed with grease which should be sufficient for one month of normal operation. For normal operation, the screw jacks should be lubricated about once a month, using one of the following extreme pressure greases or their equivalent:

Shell	Gadus S2V220AC2 (Alvania WR2)
BP	Energrease LC2
Castrol	Spheerol EPL2
Mobil	Mobilux EP2

For severe conditions, the screw jacks should be lubricated more frequently, using one of the above greases (daily to weekly depending on conditions). If duty is heavy, an automatic lubrication system is strongly recommended. If ambient temperatures exceed 90°C (194°F) consult Power Jacks.

8. On ball screw jack applications, periodically lubricate the exposed ball screw grooves with a cloth dampened with a good grade 10W30 oil for most applications. An instrument grade oil should be used in dirty and heavy duty environments, and bearing grease for environments at extremely high temperatures. Extreme temperature and other environmental conditions should be referred to Power Jacks for recommended lubricating procedures.

CAUTION: Where ball screws are not protected from airborne dirt, dust, etc., bellows boots should be used. Inspect frequently at regular intervals to be certain a lubricating film is present. Ball screws should never be run dry.

9. Due to the high efficiency of the ball screw jack design, a brake must be used in conjunction with motor selected to position the screw jack.

Useful Formulae for Screw Jack Calculations

Lifting Screw Lead

Lifting Screw lead (mm) = Screw Pitch (mm) *Number of Starts on Lifting Screw

Calculation of the Linear Speed

When the worm shaft speed is known, the linear speed can be determined with this formula:

Linear Speed (mm/min) =

RPM of Worm Shaft x Lifting Screw Lead (mm) Gear Ratio

or alternatively

Linear Speed (mm/min) =

RPM of Worm Shaft

Turns of Worm for 1mm Travel

Calculation of Screw Jack Input Torque

Input Torque (Nm) =

Load (kN) x Lifting Screw Lead (mm) $2 \times \pi \times Efficiency \times Gear Ratio$

or alternatively

Input Torque (Nm) =

Input Power (kW) x 9550 Input Speed (rpm)

Calculation of Screw Jack Input Power

Load (kN) x Lifting Screw Lead (mm) x Input Speed (rpm) Input Power (kW) = 60000 x Efficiency x Gear Ratio

or alternatively

Input Power (kW) =

Load (kN) x Linear Speed (mm/min) 60000 x Efficiency

Calculation Formulae

Useful Formulae for Screw Jack Calculations

Power	Metric	Imperial
Lifting Motion	$P = \frac{m x g x v}{\eta x 1000}$	P= ŋ x 33000
Linear Motion	$P = \frac{F_{R} \times v}{1000}$	$P = \frac{F_{R} \times v}{33000}$
	F _R = μxmxg	F _R = µxw
Rotary Motion	P = <u>T x n</u> 9550	P=63000
Torque		
	T = F _R xr	T = Txr
Linear Motion	T = <u>P x 9550</u> n	T = <u>P x 6300</u> n

Symbol	Quantity	Metric Units	Imperial Units
Р	Power	kW	HP
Т	Torque	Nm	lbf.in
F _R	Resistance due to Friction	Ν	lbf
m	Mass	kg	-
W	Weight	-	lb
g	Gravitational Acceleration	9.81 ms ⁻²	32.185 ft ⁻²
V	Velocity	ms ⁻¹	ft/min
η	Efficiency	decimals	decimals
μ	Coefficient of Friction	decimals	decimals
n	Rotational Speed	rpm	rpm
r	Radius	m	in

POWERJACKS

Useful Formulae for Screw Jack Calculations

Moment of Inertia	Metric	Imperial
Solid Cylinder	$J = \frac{1}{2} x m x r_{od}^2$	$WK^{2} = \frac{1}{2} x W x r_{od}^{2}$
Hollow Cylinder	$J = \frac{1}{32} \times \overline{\omega} \times \rho \times d_{od}^{4}$	WK ² = $\frac{\varpi}{32}$ r x l x d _{od} 4
	J = 0.098 x ρ x I x d _{od} 4	$WK^2 = 0.1 \times \rho \times I \times d_{od}^4$
Hollow Cylinder	$J = \frac{1}{2} x m x (r_{od}^2 - r_{id}^2)$	$WK^2 = \frac{1}{2} x W x (r_{od}^2 - r_{id}^2)$
	$J = \frac{1}{32} \times \omega \times \rho \times I \times (d_{od}^{4} - d_{id}^{4})$	WK ² = $\frac{\varpi}{32}$ x ϖ x ρ x I x (d _{od} 4 - d _{id} 4)

J =	0.098 x ρ x l x (d _{od} 4 -d _{id} 4)	WK ² =	$0.1 \times \rho \times I \times [d_{od}^{4} - d_{id}^{4}]$
-----	--	-------------------	---

Acceleration or Braking Time

T _{acc=}	Jxn	T _{acc=}	WK ² x n
	9.55 x T _{acc}		308 x T _{acc}

Symbol	Quantity	Metric Units	Imperial Units
J	Moment of Inertia (metric)	kgm ²	-
WK ²	Moment of Inertia (imperial)	-	lb.ft ²
T _{acc}	Torque due to Acceleration or Braking	Nm	lbf.ft
m	Mass	kg	-
W	Weight	m	lb
g	Outer Radius	m	ft
V	Internal Radius	m	ft
η	Outer Diameter	m	ft
μ	Internal Diameter	m	ft
n	Density	kg/m ³	kg/m ³
r	Time for Acceleration or Braking	S	5
r	Rotational Speed	rpm	rpm

www.powerjacks.com

Power Jacks specialises in the design and manufacture of precision linear actuation, positioning and lifting equipment.

Our products are supplied globally across many sectors including Industrial Automation, Energy, Transport, Defence and Civil.

Power Jacks Ltd Kingshill Commercial Park Prospect Road, Westhill Aberdeenshire AB32 6FP Scotland (UK) Tel: +44 (0)1224 968968

www.powerjacks.com sales@powerjacks.com

PJ-SJB-E-BS-EN-01b

All information in this document is subject to change without notice. All rights reserved by Power Jacks Limited. May not be copied in whole or in part. ©Power Jacks Limited 2018, Aberdeenshire, Scotland, United Kingdom.

